Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Machado, Leonardo Ribeiro |
Orientador(a): |
Gluz, João Carlos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade do Vale do Rio dos Sinos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação Aplicada
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/5051
|
Resumo: |
O desempenho de um SGBD é um fator crítico a ser considerado durante a sua utilização. Diversas técnicas são atualmente empregadas na tentativa de aumentar o desempenho de um SGBD. Esta pesquisa integra tecnologias de agentes e de mineração de dados para a criação de modelos probabilísticos (bayesianos) de decisão aptos a auxiliar no processo de melhoria de desempenho de um SGBD. Este modelo é usado, então, como base da ferramenta ATTuneDB de sintonia de SGBD. A partir da carga real de operação de um SGBD PostgreSQL, a ferramenta utiliza este modelo para identificar o regime de trabalho do SGBD e encontrar o melhor conjunto de valores para os parâmetros deste SGBD, apoiando o administrador do SGBD na tarefa de otimizar o desempenho deste. |