Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Cappellari, Márcio Junior |
Orientador(a): |
Oliveira, Luiz Paulo Luna de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade do Vale do Rio dos Sinos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação Aplicada
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/4657
|
Resumo: |
A preocupação com a segurança no trânsito é tão antiga quanto a história do automóvel e muitos são os esforços das montadoras, dos órgãos públicos e de pesquisa, visando diminuir o número de acidentes e de vítimas do trânsito. Muitos dos acidentes que acontecem são atribuídos a falha humana dos motoristas, que por imprudência e/ou imperícia, não conseguem perceber obstáculos a tempo de evitar uma colisão. Entenda-se por obstáculo outro veículo, um pedestre na pista, e até mesmo uma árvore, animal ou qualquer objeto que obstrua a passagem do condutor e que poderá causar um acidente. De fato, este trabalho esta focado na identificação de outros veículos. O presente trabalho apresenta um algoritmo capaz de detectar obstáculos na pista por visão computacional. Trata-se de um veículo equipado com uma câmera monocular embarcada, com processamento e identificação de obstáculos em tempo real, apoiando o motorista sobre a presença destes obstáculos no campo de visão da câmera, e sobre a aproximação destes com risco de colisão. Outros sensores, como radar, infra-vermelho, sonar poderiam apoiar na detecção de obstáculos, porém, é premissa deste estudo, desenvolver o algoritmo utilizando recursos de baixo custo e focada no processamento de imagens. Inicialmente, procurar-se-á a delimitação da região de busca por obstáculos, também chamada de região de interesse, através da detecção das bordas da pista. Na sequência o detector trabalhará na geração de hipóteses (HG), com a identificação de candidatos a obstáculos, para sobre eles processar a etapa de verificação da hipótese e assim confirmar ou negar a presença de obstáculos reais. São considerados atributos da imagem como cor/intensidade, simetria, quinas, bordas, linhas horizontais e verticais, e calibração de câmera. Além disso, treinou-se um classificador de cascata considerando um conjunto de características Haar. |