Sumarização e extração de conceitos de notas explicativas em relatórios financeiros: ênfase nas notas das principais práticas contábeis

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Cagol, Adriano
Orientador(a): Valiati, João Francisco
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/7001
Resumo: As demonstrações financeiras apresentam o desempenho financeiro das empresas e são uma importante ferramenta para análise da situação patrimonial e financeira, bem como para tomada de decisões de investidores, credores, fornecedores, clientes, entre outros. Nelas constam as notas explicativas que descrevem em detalhes as práticas e políticas de comunicação dos métodos de contabilidade da empresa, além de informações adicionais. Dependendo dos objetivos, não é possível uma correta análise da situação de uma entidade através das demonstrações financeiras, sem a interpretação e análise das notas explicativas que as acompanham. Porém, apesar da importância, a análise automática das notas explicativas das demonstrações financeiras ainda é um obstáculo. Em vista desta deficiência, este trabalho propõe um modelo que aplica técnicas de mineração textual para efetivar a extração de conceitos e a sumarização das notas explicativas, relativas à seção de principais práticas contábeis adotadas pela empresa, no sentido de identificar e estruturar os principais métodos de apuração de contas contábeis e a geração de resumos. Um algoritmo de extração de conceitos e seis algoritmos de sumarização foram aplicados sobre as notas explicativas das demonstrações financeiras de empresas da Comissão de Valores Mobiliários do Brasil. O trabalho mostra que a extração de conceitos gera resultados promissores para identificação do método de apuração da conta contábil, visto que apresenta acurácia de 100% na nota explicativa do estoque e do imobilizado e acurácia de 96,97% na nota explicativa do reconhecimento da receita. Além disso, avalia os algoritmos de sumarização com a medida ROUGE, apontando os mais promissores, com destaque para o LexRank, que no geral conseguiu as melhores avaliações.