Detalhes bibliográficos
Ano de defesa: |
2006 |
Autor(a) principal: |
Souto, Antonio Carlos Stumpf |
Orientador(a): |
Cechin, Adelmo Luis |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade do Vale do Rio do Sinos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação Aplicada
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/2226
|
Resumo: |
Neste trabalho é proposto um novo método de otimização do método Monte Carlo (MC) aplicado ao dobramento de proteínas. Este método baseia-se em informações oriundas de Redes Neurais Artificiais (RNAs) treinadas para prever a estrutura secundária de proteínas. Inicialmente, são introduzidos conceitos básicos sobre proteínas e sua estrutura, sobre o método MC, sobre RNAs e sobre os métodos PHD e PROF de treinamento de RNAs para a predição de estruturas secundárias. A seguir, é apresentada uma revisão bibliográfica sobre métodos de previsão de estrutura tridimensional de proteínas e o ganho de informação em sistemas híbridos. Com base nos resultados obtidos em outras abordagens, um novo método é proposto utilizando as predições dos método PROF, disponíveis on-line e com índices de acerto para estrutura secundária acima de 76%, para a redução do espaço de busca do método MC aplicado ao dobramento de proteínas. O método MC é apre- sentado com a previsão da estrutura secundária baseada em RNAs (MC-RNA), e é apl |