Uso de redes neurais artificiais na simulação Monte Carlo aplicado ao problema de dobramento de proteínas

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Souto, Antonio Carlos Stumpf
Orientador(a): Cechin, Adelmo Luis
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio do Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/2226
Resumo: Neste trabalho é proposto um novo método de otimização do método Monte Carlo (MC) aplicado ao dobramento de proteínas. Este método baseia-se em informações oriundas de Redes Neurais Artificiais (RNAs) treinadas para prever a estrutura secundária de proteínas. Inicialmente, são introduzidos conceitos básicos sobre proteínas e sua estrutura, sobre o método MC, sobre RNAs e sobre os métodos PHD e PROF de treinamento de RNAs para a predição de estruturas secundárias. A seguir, é apresentada uma revisão bibliográfica sobre métodos de previsão de estrutura tridimensional de proteínas e o ganho de informação em sistemas híbridos. Com base nos resultados obtidos em outras abordagens, um novo método é proposto utilizando as predições dos método PROF, disponíveis on-line e com índices de acerto para estrutura secundária acima de 76%, para a redução do espaço de busca do método MC aplicado ao dobramento de proteínas. O método MC é apre- sentado com a previsão da estrutura secundária baseada em RNAs (MC-RNA), e é apl