Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Goecks, Lucas Schmidt |
Orientador(a): |
Korzenowski, André Luis |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade do Vale do Rio dos Sinos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia de Produção e Sistemas
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/7645
|
Resumo: |
Como uma das atividades mais importantes na engenharia de produção, o planejamento de instalações consiste na tomada de decisões relativas ao leiaute dos setores, unidades de produção/ fabricação, locais de armazenamento, e assim por diante. Conceito que é apoiado pela variabilidade dos processos produtivos, que muda de um período de produção para outro e de uma empresa para a outra. Atualmente, a literatura apresenta abordagens de como solucionar o problema de leiaute para empresas de pequeno e médio porte com modelos de planejamento, e de tomada de decisão multicritérios, ou meta-heurísticos. A literatura aborda estes dois métodos de forma separada. Inclusive, não existem relatos de comparações entre eles desde o conhecimento do autor. Como resposta à esta lacuna de pesquisa, definiu-se o seguinte objetivo: "identificar um método para planejamento de leiautes aplicável em empresas de pequeno e médio porte". A meta foi desenvolver uma ferramenta de modelagem genérica e que atenda à diferentes necessidades. Sendo assim, este trabalho abordou o Systematic Layout Planning (SLP) e o Particle Swarm Optimization (PSO) para planejamento de leiautes, avaliando a melhor proposta pelo Analytic Hierarchy Process (AHP). Em decorrência de interesses práticos que visam à aplicação de ferramentas para a solução de problemas específicos, este trabalho classifica-se como pesquisa aplicada de abordagem quantitativa, embasado por processos de tomada de decisão e de modelagem. Os resultados obtidos demonstram que o SLP fornece melhores propostas de leiautes que o PSO, para pequenas e médias empresas. O SLP respeita a alocação adjacente dos setores de acordo com o fluxo de material, enquanto que o PSO distribui aleatoriamente as áreas produtivas, o que proporciona maior variabilidade nas propostas de leiautes. O SLP demandou maior tempo de planejamento e um método auxiliar (AHP) para definição da melhor proposta de leiaute. Já o PSO forneceu o melhor leiaute sem uma ferramenta de suporte e a simulação foi mais rápida após estruturação do modelo do algoritmo. Implicações práticas à esta pesquisa encontram-se na análise da redução de custos com dados reais. Foram identificados na literatura objetivos de otimização e restrições mais usuais. Quanto ao tipo de leiaute, conforme as características da empresa a ser explorada, será considerado o tipo job-shop/funcional. Esta pesquisa contribui ao meio acadêmico no âmbito de sintetizar dois métodos, distintos, para planejamento de leiautes e compará-los com uma ferramenta de tomada de decisão multicriterial. Ao meio empresarial, a mesma fornece métodos que podem ser incorporados ao cotidiano das empresas no que diz respeito ao planejamento de leiautes e tomada de decisões. |