Aplicação de Deep Learning em dados refinados para Mineração de Opiniões

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Jost, Ingo
Orientador(a): Valiati, Joao Francisco
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/3841
Resumo: Deep Learning é uma sub-área de Aprendizado de Máquina que tem obtido resultados sa- tisfatórios em várias áreas de aplicação, implementada por diferentes algoritmos, como Stacked Auto-encoders ou Deep Belief Networks. Este trabalho propõe uma modelagem que aplica uma implementação de um classificador que aborda técnicas de Deep Learning em Mineração de Opiniões, área que tem sido alvo de constantes estudos, dada a necessidade das corporações buscarem a compreensão que clientes possuem de seus produtos ou serviços. O favorecimento do crescimento de Mineração de Opiniões também se dá pelo ambiente colaborativo da Web 2.0, em que várias ferramentas propiciam a emissão de opiniões. Os dados utilizados passaram por um refinamento na etapa de pré-processamento com o intuito de aplicar Deep Learning, da qual uma das principais atribuições é a seleção de características, em dados refinados em vez de dados mais brutos. A promissora tecnologia de Deep Learning combinada com a estratégia de refinamento demonstrou nos experimentos a obtenção de resultados competitivos com outros estudos relacionados e abrem perspectiva de extensão deste trabalho.