Comparação entre métodos univariados e multivariados na seleção de variáveis independentes, na construção de tabelas volumétricas para Leucaena leicocephala (Lam) de Wit

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: ARAÚJO, Adalberto Gomes de
Orientador(a): SILVA, José Antônio Aleixo da
Banca de defesa: MARINO, Jacira Guiro, MENDES, Paulo de Paula
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Biometria e Estatística Aplicada
Departamento: Departamento de Estatística e Informática
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4450
Resumo: The objective of this work was to use multivariate and univariate statistical methods, in the selection of independent variables, in mathematical models, in the construction of volume tables for Leucaena leucocephala, looking for reduction in time and costs, without loss of precision. The data came from an experiment carried out at the Experimental Station of the Institute of Agriculture Research (IPA), Caruaru-PE. It was used 201 trees of leucena that had their volumes (dependent variable) measured by the method of Smalian, and 20 variables independent measured in the same trees. For the selection of the independent variables the following methods were used: Principal Components, Cluster Analysis, Maximum and Minimum R2, Stepwise, Forward, Backward and Criterion of Akaike. In the general, the univariate and multivariate methods used in the selection of independent variables for volume models, showed similar responses, even though they had different structures in relation to the independent variables, since the number of those variables is high. Besides the applied statistical tests, the researcher'sjudgment about the relevance of the selected independent variables in the final equations has a great importance, mainly, in the reduction of costs and sampling errors.