Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
TAVARES, Ginetton Ferreira
 |
Orientador(a): |
OLIVEIRA, Helinando Pequeno de |
Banca de defesa: |
HERNÁNDEZ, Eduardo Padrón,
MELO, Natoniel Franklin de,
BRITO, Douglas de,
GOMEZ, Nikifor Rakov |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biotecnologia (Renorbio)
|
Departamento: |
Rede Nordeste de Biotecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7432
|
Resumo: |
In this work, magnetic nanocomposites based on iron oxide, polypyrrole and carbon nanotubes were applied in the extraction of hexavalent chromium in solution and in the synthesis of galactooligosaccharides (GOS). Two different types of nanocomposites were prepared, one based on polypyrrole and iron oxide (Fe3O4@PPy) and another containing magnetized carbon nanotubes and polypyrrole (MWCNT/Fe3O4@PPy). During the preparation of the nanocomposites two types of oxidizing agents were used. Initially the ammonium persulfate (APS) was used to synthesize the nanocomposites and later iron chloride III with six different relations between monomer and oxidant were applied. These compounds were used in the extraction of hexavalent chromium in aqueous medium and in GOS production from the immobilization of the β-galactosidase enzyme. In the first step, the composites were subjected to adsorption tests in the presence of hexavalent chromium solution, in which the chromium concentration was measured before and after contact with the composites. The second step was to analyze the influence of the immobilization of the β-galactosidase enzyme on the surface of the Fe3O4 + PPy composite and to observe the effects on the production of GOS and the hydrolysis of lactose through high performance liquid chromatography. It was possible to observe that the Fe3O4@PPy and MWCNT/Fe3O4@PPy composites are capable of adsorbing hexavalent chromium present in solution and that the chromium adsorption capacity was higher for composites containing carbon nanotubes. We also observed that factors such as type of oxidant, pH, temperature and contact time directly interfere with the adsorption capacity of chromium in solution. In relation to the GOS production, it was possible to observe that the Fe3O4 @ PPy nanocomposite acted efficiently, facilitating the removal of the reaction medium through the application of magnetic field, thus favoring the GOS production process. |