Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
RADAELLI, Paula |
Orientador(a): |
RIBEIRO, Gilvan Pio |
Banca de defesa: |
ANDRADE, Genira Pereira de,
SANTOS, Roseane Cavalcanti dos,
ISEPPON, Ana Maria Benko,
MELO FILHO, Péricles de Albuquerque |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Fitopatologia
|
Departamento: |
Departamento de Agronomia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6678
|
Resumo: |
The vegetative propagation of the grapevine (Vitis spp.) facilitates the dissemination of pathogens, such as viruses, favoring the appearance of complex diseases, by accumulation of different virus species in the same plant. Among the diseases that affect the grapevine, those caused by viruses are the most difficult to control because the dissemination and the accumulation of viruses are favored by the transport and use of infected propagative material. Due to advanced studies with molecular biology, evidences suggest that some grapevine viruses, as Rupestris stem pitting-associated virus (RSPaV), Grapevine leafroll-associated virus 2 (GLRaV-2) and Grapevine fanleaf virus (GFLV) frequently present polymorphic sequences, as well as mixing infections with other viruses, making difficult to define the biological properties of the different virus variants. Therefore, one objective of this work was to evaluate the variability of these three important viruses of grapevine using the molecular characterization of the coat protein (CP) gene. Fragments comprising the complete CP genes of RSPaV, GLRaV-2 and of GFLV isolates were amplifiedby RT-PCR, using primers for specific regions of each viral species, allowing the separation of the isolate groups by phylogenetic analyses of the sequences. The isolates of each viral species here studied were additionally detected by non-radioactive probes with digoxigenin, allowing unambiguous identification of infected samples, independently of the isolate used as template for probe synthesis. The methods of diagnosis of the grapevine virus diseases can be divided in three categories. The two traditional ones include the biological tests and the serologic diagnosis. Recently, the molecular methods of diagnosis have been developed, comprising the tests RT-PCR, IC-RT-PCR and real time RT-PCR. This last one is the most advanced technique of diagnose and quantification of nucleic acids, accomplishing amplifications in precisely way and with higher reproducibility, allowing the detention of more than one virus in a single reaction. Considering the difficulties to detect virus in grapevine, and the high cost of the diagnosis methods it was considered the production ofantisera against isolates of GLRaV-2 and Grapevine virus B (GVB), developed from CPs expressed in Escherichia coli and to test the possibility of using themfor detecting these two viruses in infected grapevines. The CP genes were amplified by RT-PCR, cloned, sequenced and later subcloned, where the recombinant plasmids were employed in the transformation of E. coli and in the expression of CPs. The proteins were purified, their identities confirmed by SDS-PAGE and Western blot and used for immunizing rabbit. The antisera produced against these proteins were capable to recognize corresponding recombinant proteins in Western blot and to detect GLRaV-2 and GVB in infected grapevines by indirect ELISA, as well as discriminating healthy and infected grapevines. Many viruses that infect grapevine occur in concentrations under the limit of detention of the diagnostic tests commonly used. Considering this fact, another objective of the present work was to detect important viruses of the genera Closterovirus (GLRaV-2) and Ampelovirus (Grapevine leafroll-associated virus 1 - GLRaV-1 and Grapevine leafroll-associated virus 3- GLRaV-3), family Closteroviridae, as well as the viruses of the genera Foveavirus (RSPaV) and Vitivirus (Grapevine virus A (GVA) and the GVB),family Flexiviridae, by real time RT-PCR (TaqMan®). For ampelovirus, with degenerate primers and specific probes GLRaV-1 and GLRaV-3 were detected in isolates and/or cultivars tested. For closterovirus with degenerate primers and specific probes GLRaV-2 was detected in all cultivars tested and in Nicotiana benthamiana. The members of the family Flexiviridae GVA, GVB and RSPaV were detected by multiplex RT-PCR (TaqMan®), demonstrating that RT-PCR TaqMan® is a fast method for molecular diagnosis, quantitative, reliable, sensitive and applicable for detecting more than one virus in the same reaction. |