Agrupamento de dados superparamagnético
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática Brasil UFRPE Programa de Pós-Graduação em Biometria e Estatística Aplicada |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4977 |
Resumo: | Aplicamos um método não supervisionado de agrupamento de dados para identificar padrões em vários conjuntos dados. A técnica baseia-se em um mapeamento do problema em um sistema magnético granular heterogêneo, cujo comportamento é investigado através de métodos Monte Carlo comumente empregado no campo da física estatística. Cada objeto é descrito por um conjunto de atributos de valores numéricos, interpretados como um ponto em um espaço euclidiano de dimensão apropriada. O mapeamento consiste em associar a cada item do conjunto, um ponto no espaço, um spin de Potts. O sistema físico é descrito por um hamiltoniano de Potts de muitos estados, no qual a interação entre os spins decai exponencialmente com a distância entre eles. Itens semelhantes, próximos, interagem fortemente enquanto que aqueles mais distantes entre si interagem apenas fracamente. O magneto atinge um estado superparamagnético para temperaturas suficientemente altas, no qual os spins de alguns grãos permanecem fortemente correlacionados, porém, os grãos estão fracamente ligados entre si. Cada grão corresponde a um grupo. Implementamos o método no ensemble microcanônico, no qual a energia total é conservada e constitui o parâmetro de controle. Nesse caso, a temperatura é calculada ao longo do processo e podemos acessar estados termodinamicamente estáveis, metaestáveis, bem como, instáveis. Trabalhamos com três conjuntos artificiais de dados, em duas e três dimensões, e um conjunto de dados reais com quatro dimensões. O desempenho do método foi satisfatório em todos os casos investigados. |