Estimativa de produtividade da cana-de-açúcar utilizando dados agrometeorológicos e imagens do sensor MODIS

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: SILVA, Anderson Santos da lattes
Orientador(a): MOURA, Geber Barbosa de Albuquerque
Banca de defesa: NÓBREGA, Ranyére Silva, GOMES, Anthony Wellignton Almeida, NASCIMENTO, Cristina Rodrigues, SILVA, Ênio Farias França e
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Agrícola
Departamento: Departamento de Engenharia Agrícola
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5319
Resumo: This research is based on estimated and observed agricultural productivity in an area of commercial sugarcane production located at São Francisco’s Agroindustry – AGROVALE S.A., Juazeiro – BA, Brazilian northeast. The new yield estimation models were obtained by multiple linear regression, in which the inputs variables were: irrigation, precipitation, average air temperature, vapor saturation deficit of the air, photoperiod, normalized difference vegetation index (NDVI), leaf area index (LAI) and fractional soil cover (FC). To obtain these models, it was used the statistics program Statística version 10. Futhermore, the meteorological data were obtained from an automatic weather station located at the Farm Brasil Uvas, Juazeiro – BA such as: precipitation (mm), temperature (°C), relative humidity (%), evapotranspiration (mm), current vapor pressure (hPa) and saturation vapor pressure (hPa). The crop yield data and parameters related to crop development were obtained from AGROVALE Agriculture Department. The spectral data, NDVI, IAF and FC, were extracted from MODIS sensor images (Spectroradiometer Imager Moderate Resolution). The data used to models validation were obtained from the same sources previously mentioned. The data were analyzed by mean absolute error (DMA) and mean relative error (DMR). The comparison of yield observed and estimated values showed that the spectral agrometeorological model (SAM) presented the lower and better mean relative error (DMR) with a mean variation of 0.34 %, followed by agrometeorological model with a mean variation of 1.37 % and, finally, the spectral model presented larger mean relatives errors in comparison with other two models, showing a mean variation of 6.58%, approaching AGROVALE’s technicians estimation that presented a mean variation of 6.75%. At the validation’s model for the 2004/2005 crop year, the spectral surpassed the agrometeorological and agrometeorological spectral with average relative errors of 5.05%, while for other models the difference were 15.11% and 16.19%, reflecting a productivity of 93.05 t ha-1 versus 83.19 t ha-1 and 82.13 t ha-1 of agrometeorological and agrometeorologicalspectral models, respectively, for an observed yield of 98 t ha-1. Soon after the 2011/2012 years crop there was a planting renovation with a new variety, with different physiology and consequently a distinct productive power and, from 2013/2014 crop year, the models underestimated the productivity compared to the real. The estimate made by the technicians, based on the crop development since planting until next harvest, showed satisfactory results as well as the tested models.