Uso de resíduos lignocelulósicos na confecção de compósitos de cimento e areia para fins construtivos não estruturais

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: BARACHO JUNIOR, Expedito lattes
Orientador(a): MARANGON, Luiz Carlos
Banca de defesa: NOGUEIRA, Marcelo, BRAZ, Rafael Leite, ROLIM, Mário Monteiro, MARANGON, Gabriel Paes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências Florestais
Departamento: Departamento de Ciência Florestal
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4989
Resumo: This work results from the use of lignocellulosic residues, Portland cement CP IV - 32, washed sand and water in the production of composites intended to provide subsidies that enable the production of elements of popular low-cost construction. The objectives of this study relate to the use of methods and low technology requirement procedures, according to the reality of the metropolitan area of Recife, which boost the use of lignocellulosic wastes to enable efficiency and quality in the use of available forest biomass. Fragments of the original dimensions – not selected or standardized granulometry – Bamboo (Bambusa vulgaris var vulgaris), Maçaranduba (Manilkara spp) and mixed wood previously treated with soaking in water and subsequently in an aqueous solution of 2% NaOH was manually compacted into molds cylindrical steel 5 x 10 cm with cement, washed sand and water, forming composites, this being technologically and allowing to obtain a product of adequate strength. The evaluation of total content of extract residues of untreated and pretreated Maçaranduba showed 5.85% for the untreated particles, 3.31% for the immersed in hot water and 11.22% for those treated with 2% NaOH. Preliminary formulations were undertaken in order to assist in making the decision adopted trait. The employee trace was 1:0.05:3:0.4, respectively cement, lignocellulosic, washed sand and water. The degree of compatibility between cement and lignocellulosic residues, determined by the obtained compatibility index by maximum hydration temperature was classified as good for Bamboo and regular for Maçaranduba. The compression strength was adequate as a decision tool to determine the compatibility of the composite cement-lignocellulosic. Found with ultrasound, the composite cement bamboo presented ultrasonic pulse velocity 1820 m/s, proving its appropriate compatibility with cement. Composite cement lignocellulosic had average resistances to simple compression of 10.28 MPa (Bamboo), 9.95 MPa (Maçaranduba) and 7.40 MPa (mixed wood). The average dynamic modulus of elasticity were the order of 8870 MPa for Bamboo, of 8330 MPa for Maçaranduba and 7140 MPa for mixed wood. The average density shown by these composites in g/cm3, was 1.88 for Bamboo, 1.85 to 1.85 for Maçaranduba and mixed wood. Based on these results, those previously treated woody material can be used in combination with cement and are intended for non-structural use, acoustic and thermal insulation.