Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
GUIMARÃES, Lílian Margarete Paes
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
PEDROSA, Elvira Maria Régis |
Banca de defesa: |
LARANJEIRA, Delson,
MARIANO, Rosa de Lima Ramos,
OLIVEIRA, Sônia Maria Alves de,
SILVA, Cláudia Ulisses de Carvalho,
BARROS, Andréa Baltar |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Fitopatologia
|
Departamento: |
Departamento de Agronomia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6609
|
Resumo: |
Sugarcane (Saccharum spp.) production in Northeastern Brazil is low when compared to other producing regions in the country. Among the main diseases in the fields those caused by nematodes are pointed out due to high incidence and costs. Under this point of view, four experiments were carried out for more economic, efficient and environmental sound control alternatives. The first experiment evaluated methyl jasmonate, potassium silicate and Ecolife 40® efficiency, in association or not with systemic nematicide, for integrated nematode management in sugarcane. The experiment was carried out under a split plot in completely randomized block design in a nematode naturally infested area. At planting it was evaluated nematode densities in soil; and 3, 6, and 12 months later in soil and roots. Shoots number and productive and industrial variables were evaluated at 3 and 12 months, respectively. There was significant reduction on Meloidogyne spp. density in soil in plots with inducer in association or not with nematicide, and significant correlation between root-knot nematodes and Pratylenchuszeae. Other nematodes in field were not affected by inducers or nematicide. All productive and industrial variables were not affected also, except shoot and stalk numbers, significantly higher than the control in plots with Ecolife 40® and any inducer, respectively. In the second experiment it was evaluated under greenhouse methyl jasmonate and potassiumsilicate effect on M. incognita parasitism in sugarcane variety RB863129 and the peroxidase and β-1,3-glucanase activity elicited. The effect of Methyl jasmonate and potassium silicate did not affect shoot biomass. Methyl jasmonate and potassium silicate significantly decreased eggs number per gram of roots. Seven days after application, both inducers affected β-glucanase activity in inoculated plants and, at 14 and 21 days, inducerspromoted significant variations in peroxidase e β-1,3-glucanase levels, although, inversely to peroxidase, β-1,3-glucanase activity did not differ between inoculated and non inoculated plants. The third experiment evaluated under greenhouse the effect of methyl jasmonate and potassium silicate, in different applications, on sugarcane development under P. zeae naturally infested soil. Experimental design was completely randomized with 10 treatments and five replicates, using the nematicide carbofuran and untreated plants as the controls. Inducers did not affect (P>0.05) height and biomass of the plants neither P. zeae density in soil and root, 100 days after transplanting, differing from nematicide which reduced (P≤0.05) nematode density in soil and root. The fourth experiment evaluated methyl jasmonate and potassium silicate effect on M. incognita parasitism in two sugarcane varieties RB867515 and RB92579, under greenhouse. Inducers effect on nematodes depended on sugarcane variety. Methyl jasmonate and potassium silicate did not affect shoot biomass in RB867515. Methyl jasmonate significantly decreased M. incognita eggs in RB867515, and potassium silicate in RB867515 and RB92579, although bothsignificantly decreased eggs number per gram of roots in RB867515. |