Teorema do envelope generalizado para espaços de tipos multidimensionais

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Griebeler, Marcelo de Carvalho
Orientador(a): Araujo, Jorge Paulo de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/26099
Resumo: O principal objetivo desta dissertação é obter um Teorema do Envelope que permita mecanismos não diferenciáveis, preferências arbitrárias e que possa ser aplicado em modelos com múltiplos agentes. Nós alcançamos isto ao expandir a análise de Milgrom e Segal (2002), generalizando seus resultados para espaços de tipos multidimensionais. Dessa forma, continuamos permitindo que a regra de escolha (mecanismo) seja descontínua. Para obter nosso resultado, é necessário o uso do Teorema do Máximo de Berge e, consequentemente, devemos impor compacidade no conjunto de escolha. Inicialmente esta hipótese pode parecer forte, porém argumentamos que em aplicações _e muito improvável termos um conjunto de escolha aberto ou, principalmente, não limitado. Nós também identificamos condições para que a função valor seja absolutamente contínua e mostramos que sua representação integral também é válida para espaços de tipos multidimensionais. Inicialmente propomos uma generalização direta do resultado de Milgrom e Segal (2002), utilizando a hipótese de continuidade absoluta da função de utilidade do agente. Entretanto, esta exigência não possui muito significado econômico e é considerada pouco elegante por parte da literatura. Neste sentido, incorporamos uma hipótese adicional de diferenciabilidade da utilidade em todo o domínio que gera a mesma representação integral e possui uma maior interpretação econômica. Nossos resultados são, em geral, aplicados a modelos com múltiplos agentes, em especial Economia do Setor Público (provisão de bens públicos e taxação ótima) e teoria dos leilões.