Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Carvalho, Paulo Roberto Moura de |
Orientador(a): |
Costa, Joao Felipe Coimbra Leite |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/218224
|
Resumo: |
Nos estudos das geociências, dados de amostragem regular (ex.: imagens) são observações de estruturas geológicas. Assim, espera-se que elas retratem a grande riqueza de feições e complexidade estrutural que a natureza apresenta. Remover ruído puramente aleatório desses dados (sem uma estrutura espacial) é uma tarefa trivial. Separar feições com estruturas espaciais diferentes, por exemplo, variações de relevo da escala de 10km das variações na de 1km, é de crescente interesse na atividade de geomodelagem. No entanto, esse objetivo requer um algoritmo sofisticado. Os métodos existentes para essa tarefa requerem uma parametrização cujo ajuste é tarefa laboriosa, por vezes tediosa, e objeto de interpretação. Após visitar os principais métodos para decomposição estrutural manual e com aprendizado de máquina, esta tese propõe um algoritmo que automatiza a decomposição estrutural baseando-se no variograma. Ou seja, um dado de entrada cujo variograma apresente múltiplas estruturas com diferentes escalas e anisotropias é decomposto automaticamente em imagens cujos variogramas individuais correspondem a cada estrutura. Software de código aberto foi escrito para testar o algoritmo proposto com um dado sintético cujo variograma contém quatro estruturas imbricadas. Os resultados mostraram eficácia semelhante ao da krigagem fatorial, porém de forma automatizada e com bom desempenho computacional. |