Aperfeiçoamento do algoritmo colônia de formigas para o desenvolvimento de modelos quimiométricos

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Pessoa, Carolina de Marco
Orientador(a): Trierweiler, Jorge Otávio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/118860
Resumo: O desenvolvimento e aperfeiçoamento de métodos de otimização são pontos de profundo interesse em todas as áreas de pesquisa. Tais técnicas muitas vezes envolvem a aquisição de métodos de controle novos ou melhores, o que está diretamente ligado a duas tarefas importantes: a escolha de formas eficientes de monitoramento do processo e a obtenção de modelos confiáveis para a variável de interesse a partir de dados experimentais. Graças às suas diversas vantagens, os sensores óticos vêm sendo amplamente aplicados na primeira tarefa. Uma vez que é possível a utilização de vários tipos de espectroscopia através deste tipo de sensor, modelos capazes de lidar com dados espectrais estão se tornando cada vez mais atraentes. A segunda tarefa, por sua vez, depende não só de quais preditores são utilizados na construção do modelo, mas também de quantos. Como a qualidade do modelo depende também do número de variáveis selecionadas, é importante desenvolver métodos que identifiquem aqueles que explicam o máximo possível da variabilidade dos dados. O método de otimização Colônia de Formigas (ACO) aparece como uma ferramenta bastante útil na seleção de variáveis, podendo-se encontrar muitas variações desse algoritmo na literatura. O propósito deste trabalho é desenvolver métodos de seleção de variáveis com base no algoritmo ACO, conceitos estatísticos e testes de hipóteses. Para isso, diversos critérios de decisão foram implementados nas etapas do algoritmo referentes à atualização de trilha de feromônios (C1) e à seleção de modelos (C2). A fim de estudar estas modificações, foram realizados dois estudos de caso: o primeiro na área de bioprocessos e o segundo na área de caracterização de alimentos. Ambos os estudos mostraram que, em geral, os modelos com menores erros são obtidos utilizando-se métricas dos componentes do modelo, tal como o tamanho do intervalo de confiança de cada parâmetro e o teste-t de hipóteses. Além disso, a modificação do critério de seleção de modelos parece não interferir significativamente no resultado final do algoritmo. Por último, foi feito um estudo da aplicação dessas versões do ACO no campo de caracterização de combustíveis, mais especificamente diesel, associando-se duas análises espectroscópicas para predição do conteúdo de enxofre. Algumas das versões desenvolvidas mostraram-se superior ao algoritmo ACO utilizado como base para este trabalho, proposto por Ranzan (2014), e todas os versões forneceram melhores resultados na quantificação de enxofre que aqueles obtidos por PCR. Dessa forma, comprova-se a potencialidade de métricas implementadas no algoritmo ACO, associadas à espectroscopia, na seleção de preditores significativos.