Ordered stacks of time series for exploratory analysis of large spatio-temporal datasets

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Oliveira, Guilherme do Nascimento
Orientador(a): Comba, Joao Luiz Dihl
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/130557
Resumo: O tamanho dos conjuntos de dados se tornou um grande problema atualmente. À medida que o sensoriamento urbano ganha popularidade, os conjuntos de dados de natureza espacial e temporal se tornam ubíquos, e levantam uma série de questões relacionadas ao armazenamento e gerenciamento destes. Isso também cria uma mudança no paradigma de análise, uma vez que os conjuntos de dados que antes representavam uma única série de medições ordenadas no tempo, agora são compostos por centenas dessas séries, com uma taxa de amostragem que está aumentando constantemente. Além disso, uma vez que os dados urbanos normalmente apresentam disposição geográfica inerente, a maioria das das tarefas requerem o suporte de representações espaciais apropriadas. Este se torna outro problema, visto que as tecnologias de exibição de imagens não avançam na mesma velocidade das tecnologias de sensoriamento, de modo que consequentemente acaba-se tendo mais dados do que espaço visual para representa-los. Após conduzir uma pesquisa exaustiva a respeito de análise de dados temporais e visualização, nós melhoramos uma visualização compacta de series temporais para auxiliar a exploração de grandes conjuntos de dados espaçotemporais. Nossa proposta aproveita a compacticidade de tal representação para permitir o uso de um mapa para representar os atributos espaciais dos dados, de modo coordenado, enquanto representação, de forma compreensível, centenas de series simultaneamente, com total contexto temporal. Nós apresentamos nossa proposta como sendo capaz de auxiliar várias tarefas de caráter exploratório de forma intuitiva. Para defender essa afirmação, nós mostramos como essa ideia foi desenvolvida e melhorada ao longo do desenvolvimento de dois estudos de design visual em diferentes domínios de aplicação, e validamos com a implementação de protótipos que foram usados na análise exploratória de vários conjuntos de dados com 3 representações diferentes. Palavras-