Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Oliveira, Guilherme do Nascimento |
Orientador(a): |
Comba, Joao Luiz Dihl |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/130557
|
Resumo: |
O tamanho dos conjuntos de dados se tornou um grande problema atualmente. À medida que o sensoriamento urbano ganha popularidade, os conjuntos de dados de natureza espacial e temporal se tornam ubíquos, e levantam uma série de questões relacionadas ao armazenamento e gerenciamento destes. Isso também cria uma mudança no paradigma de análise, uma vez que os conjuntos de dados que antes representavam uma única série de medições ordenadas no tempo, agora são compostos por centenas dessas séries, com uma taxa de amostragem que está aumentando constantemente. Além disso, uma vez que os dados urbanos normalmente apresentam disposição geográfica inerente, a maioria das das tarefas requerem o suporte de representações espaciais apropriadas. Este se torna outro problema, visto que as tecnologias de exibição de imagens não avançam na mesma velocidade das tecnologias de sensoriamento, de modo que consequentemente acaba-se tendo mais dados do que espaço visual para representa-los. Após conduzir uma pesquisa exaustiva a respeito de análise de dados temporais e visualização, nós melhoramos uma visualização compacta de series temporais para auxiliar a exploração de grandes conjuntos de dados espaçotemporais. Nossa proposta aproveita a compacticidade de tal representação para permitir o uso de um mapa para representar os atributos espaciais dos dados, de modo coordenado, enquanto representação, de forma compreensível, centenas de series simultaneamente, com total contexto temporal. Nós apresentamos nossa proposta como sendo capaz de auxiliar várias tarefas de caráter exploratório de forma intuitiva. Para defender essa afirmação, nós mostramos como essa ideia foi desenvolvida e melhorada ao longo do desenvolvimento de dois estudos de design visual em diferentes domínios de aplicação, e validamos com a implementação de protótipos que foram usados na análise exploratória de vários conjuntos de dados com 3 representações diferentes. Palavras- |