Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Lopes, Carlos Bruno Oliveira |
Orientador(a): |
Scharcanski, Jacob |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/72922
|
Resumo: |
O movimento dos lábios é um recurso visual relevante para a detecção da atividade de voz do locutor e para o reconhecimento da fala. Quando os lábios estão se movendo eles transmitem a idéia de ocorrências de diálogos (conversas ou períodos de fala) para o observador, enquanto que os períodos de silêncio podem ser representados pela ausência de movimentações dos lábios (boca fechada). Baseado nesta idéia, este trabalho foca esforços para detectar a movimentação de lábios e usá-la para realizar a detecção de atividade de voz. Primeiramente, é realizada a detecção de pele e a detecção de face para reduzir a área de extração dos lábios, sendo que as regiões mais prováveis de serem lábios são computadas usando a abordagem Bayesiana dentro da área delimitada. Então, a pré-segmentação dos lábios é obtida pela limiarização da região das probabilidades calculadas. A seguir, é localizada a região da boca pelo resultado obtido na pré-segmentação dos lábios, ou seja, alguns pixels que não são de lábios e foram detectados são eliminados, e em seguida são aplicados algumas operações morfológicas para incluir alguns pixels labiais e não labiais em torno da boca. Então, uma nova segmentação de lábios é realizada sobre a região da boca depois de aplicada uma transformação de cores para realçar a região a ser segmentada. Após a segmentação, é aplicado o fechamento das lacunas internas dos lábios segmentados. Finalmente, o movimento temporal dos lábios é explorado usando o modelo das cadeias ocultas de Markov (HMMs) para detectar as prováveis ocorrências de atividades de fala dentro de uma janela temporal. |