Representações esparsas através de dicionários para processamento e análise de imagens macroscópicas de lesões melanocíticas

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Flores, Eliezer Soares
Orientador(a): Scharcanski, Jacob
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/250649
Resumo: O melanoma é o tipo mais letal de câncer de pele, uma vez que é mais propenso à metástase. Especificamente, a taxa de pacientes que sobrevivem pelo menos cinco anos após o diagnóstico dessa doença no estágio inicial é superior a 99%. No entanto, essa taxa diminui para cerca de 25% se a detecção ocorre somente no último estágio. Nesse contexto, sistemas que auxiliem no diagnóstico precoce do melanoma podem desempenhar um papel de extrema importância, especialmente em regiões nas quais o acesso a dermatologistas é precário. Contudo, diferenciar um melanoma de lesões melanocíticas benignas pode ser uma tarefa desafiadora, mesmo para especialistas experientes. Para lidar com esse problema, nesta tese, propõe-se um sistema automático para detectação de melanoma a partir de uma simples fotografia digital, o qual baseia-se em modelos de representações esparsas. Os resultados apresentados pelo sistema proposto são promissores e sugerem que o sistema proposto pode potencialmente superar alternativas estado-da-arte e até mesmo médicos treinados.