Estudo computacional da formação e propriedades de membranas de carbono obtidas pela pirólise de polieterimida

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Christmann, Augusto Mohr
Orientador(a): Muniz, André Rodrigues
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/256556
Resumo: A pirólise controlada de polímeros tem sido usada na produção de materiais de carbono nanoporoso para variados fins. Em particular, poliimidas e polieterimidas têm sido usadas para a obtenção de membranas de carbono de peneiramento molecular (carbon molecular sieve membranes – CMSM), que apresentam grande potencial de aplicação na separação de gases. Estas estruturas apresentam uma coexistência de regiões cristalinas e amorfas, cujos interstícios formam poros nanométricos, resultando em membranas com uma balanceada combinação de permeância e seletividade, com desempenho superior às suas precedentes poliméricas. O objetivo desta tese é ampliar o entendimento da transformação do polímero Polieterimida (PEI) em materiais nanoporosos ricos em carbono através do processo de pirólise, assim como da estrutura e composição destes materiais e a relação com seu desempenho na separação de gases. Este foi dividido em três etapas, diretamente relacionadas entre si. Na primeira etapa do trabalho, simulações de dinâmica molecular reativa foram usadas para estudar a pirólise de PEI, buscando compreender melhor as etapas deste processo, assim como as características do sólido obtido em diferentes condições, especificamente densidade (concentração) do polímero inicial, temperatura de pirólise e tempo de processamento. Três principais etapas foram identificadas, consistindo na (i) degradação das moléculas iniciais gerando moléculas gasosas e intermediários ricos em carbono, (ii) a aglomeração dos fragmentos reativos formando uma estrutura ramificada e desordenada, seguido por (iii) um processo de grafitização, que leva à formação de variados domínios grafíticos de maior dimensão interconectados entre si. Foi conduzida uma análise detalhada dos mecanismos de reação envolvidos no processo de pirólise, permitindo entender melhor os principais passos na transformação do polímero em membranas de carbono. Análises qualitativas e quantitativas foram usadas para avaliar o efeito das condições de processamento nas propriedades do material formado, onde observou-se que o uso de maiores temperaturas e densidades aumentam o teor de carbono no material e facilitam a formação do aglomerado, assim como a sua grafitização. Os resultados destas análises foram comparados e validados frente a resultados experimentais da literatura, apresentando excelente concordância e provendo um entendimento mais profundo dos motivos para as tendências tipicamente observadas com variações das propriedades das membranas com as condições de processo. Na sequência, desenvolveu-se uma metodologia para construção de modelos tridimensionais de membranas de carbono em escala atomística partindo das estruturas dos sólidos obtidos ao final das simulações de pirólise, tais que apresentem características mais realistas comparados aos tradicionalmente usados na literatura. A diversidade de composição, morfologia e parâmetros estruturais dos sólidos formados na pirólise permitiram a construção de modelos de membranas de carbono com grande variedade de propriedades. Os métodos de construção desenvolvidos permitiram a modelagem de membranas com densidades de 0,65 a 1,56 g/cm³, fração de vazios de 0,13 a 0,60, áreas superficiais de 155 a 1924 m2/g e poros de dimensões de 0 a 25 Å. Por fim, implementou-se um protocolo de simulações de dinâmica molecular fora do equilíbrio para avaliar as propriedades de transporte destes modelos de membranas (permeabilidades e seletividades), buscando relacioná-las com diferentes características estruturais do material. Uma análise detalhada das trajetórias das moléculas ao atravessar a membrana permitiu identificar as regiões dos sólidos que permitem a permeação do gás, assim como aquelas que conferem seletividade, permitindo a passagem de algumas moléculas mas restringindo a de outras. Em linhas gerais, este trabalho traz um maior entendimento do processo de produção de materiais de carbono através da pirólise de PEI e de como suas propriedades são afetadas pelas condições de processamento. A metodologia para criação de modelos de CMSMs desenvolvida leva a representação de diferentes membranas de forma mais realista do que atualmente é apresentado na literatura, já a análise do transporte de gases destes modelos se mostrou eficiente para análise da relação entre os detalhes estruturais da membrana com seus os caminhos e propriedades de transporte. Espera-se que estes resultados e métodos desenvolvidos contribuam para uma otimização do processo de produção de CMSMs baseada em PEI e polímeros similares, visando suas aplicações práticas.