Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Vernier, Eduardo Faccin |
Orientador(a): |
Comba, Joao Luiz Dihl |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/237976
|
Resumo: |
Quando se trata de ferramentas e técnicas projetadas para ajudar na compreensão dados abstratos complexos, métodos de visualização desempenham um papel proeminente. Eles permitem que os operadores humanos alavanquem suas habilidades de descoberta de padrões, detecção de valores discrepantes, e questionamento visual para a raciocinar sobre um determinado conjunto de dados. Existem muitos métodos que criam representações visuais adequadas e úteis de para dados estáticos, abstratos, e não-espaciais. No entanto, para dados temporais, abstratos, e não-espaciais, isto é, dados que mudam e evoluem no tempo, existem poucas técnicas apropriadas. Esta tese concentra-se nos casos específicos de representação temporal de dados hierárquicos por meio de treemaps dinâmicos, e visualização temporal de dados de alta dimen sionalidade via projeções dinâmicas. Nós abordar a questão conjunta de como estender projeções e treemaps de forma estável, precisa e escalável para lidar com conjuntos de dados hierárquico-temporais e multivariado-temporais. Em ambos os casos, a literatura para técnicas estáticas é rica e os métodos estado da arte provam ser ferramentas valiosas em análise de dados. Suas contrapartes temporais/dinâmicas, no entanto, não são tão bem estudadas e, até recentemente, existiam poucos métodos hierárquicos e de alta dimensão que explicitamente levavam em consideração o aspecto temporal dos dados. Além disso, existiam poucas métricas para avaliar a qualidade desses mapeamentos visuais temporais, e ainda menos benchmarks abrangentes para comparação esses métodos. Esta tese aborda as deficiências acima mencionadas para treemaps dinâmicos e projeções dinâmicas. Propomos maneiras de medir com precisão a estabilidade temporal; avalia mos os métodos existentes, considerando o compromisso entre estabilidade e qualidade visual; e propomos novos métodos que atingem um melhor equilíbrio entre estabilidade e a qualidade visual do que as técnicas estado da arte atuais. Demonstramos nossos mé todos com uma ampla gama de dados do mundo real, incluindo uma aplicação de nossos novos métodos de projeção dinâmica para apoiar a análise e classificação dos dados de transtorno de movimentos. |