Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Barcellos, Pablo Roberlan Manke |
Orientador(a): |
Scharcanski, Jacob |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/225708
|
Resumo: |
O rastreamento de objetos em sequências de vídeos é um tema fundamental na área de processamento de imagens e visão computacional, sendo necessário nas mais diversas situações. Apesar dos diversos avanços na nessa área, o rastreamento de objetos conti nua sendo um problema desafiador, especialmente devido aos diversos fatores que podem afetar os resultados do rastreamento, como mudanças de iluminação e deformações não rí gidas. Esta tese introduz um framework baseado em filtros de correlação capaz de rastrear objetos nas mais diversas situações. O método proposto utiliza um esquema colaborativo, combinando o uso de um filtro de correlação global com o uso de filtros de correlação locais para melhorar o processo de rastreamento. Ainda, o método utiliza feições extraí das usando Redes Neurais Convolucionais (CNN), e também utiliza uma estratégia para avaliar se os resultados estimados pelos filtros de correlação são confiáveis. Resultados experimentais realizados em benchmarks públicos mostram que o método proposto con segue obter bons resultados, sendo superior aos métodos comparativos do estado da arte |