Detalhes bibliográficos
Ano de defesa: |
1986 |
Autor(a) principal: |
Zingano, Paulo Ricardo de Avila |
Orientador(a): |
Cavalcante, Jairo Athayde |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/122173
|
Resumo: |
Neste trabalho, são apresentados os aspectos essenciais da teoria de espalhamento inverso e suas aplicações ao estudo de equações de evolução não lineares. A teoria de espalhamento do operador de Schrõdinger para potenciais decaindo a limites definidos ao x + ± oo e considerada primeira com aplicações ao problema de valor inicial para a equação de Korteweg- de Vries. Segue uma discussão da teoria de espalhamento para sistemas AKNS, uma classe de problemas de autovalores direta ou indiretamente relacionada com a maior parte das equações de evolução não lineares solúveis pelo método de espalhamento inverso de interesse na prática . Uma equação não linear recentemente encontrada solúvel por esse método é discutida no Último capítulo em conexão com o problema de espalhamento de Shimizu- Wadati. Muitos tópicos importantes não são tratados aqui, incluindo o caso periódico da equação de Korteweg- de Vries, leis de conservação, formalismos Hamiltonianos, transformações de Bäcklund, comportamento assintótico das soluções ao t + co e teoria de perturbação. |