Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Lisboa, Ederval de Souza |
Orientador(a): |
Casas, Walter Jesus Paucar |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/178697
|
Resumo: |
A definição das estruturas hierárquicas envolve uma estrutura que pode ser observada em escalas de diversos comprimentos, sendo que um elemento estrutural de certa escala é formado por subestruturas periódicas de uma escala menor. Utilizando o método bidirecional de otimização topológica evolucionária BESO (Bi-directional Evolutionary Structural Optimization) em estruturas contínuas compostas por materiais únicos e por vários materiais, modeladas através do método dos elementos finitos, este trabalho implementa os procedimentos computacionais necessários com o objetivo de otimizar o comportamento dinâmico do sistema estrutural, através da maximização da frequência fundamental bem como da separação de um ou dois pares de frequências adjacentes de forma simultânea ou não, sujeita a restrições de volume estrutural nas diversas fases. Cada nível hierárquico é assumido como um meio contínuo composto por um ou mais materiais homogêneos, cada um destes com uma microestrutura associada. No projeto simultâneo com múltiplas fases, as informações foram transferidas entre a micro e a macroescala através do método da homogeneização, enquanto que as técnicas de otimização topológica visaram encontrar a melhor distribuição de fases em ambas as escalas para a maximização das propriedades desejadas Dessa forma se alcançaram uma série de topologias associadas às diversas funções objetivo utilizadas, decorrentes da maximização da frequência fundamental, do intervalo entre um par de frequências naturais consecutivas, da separação das frequências naturais a partir de uma frequência prescrita e da separação de dois pares de frequências consecutivas concomitantemente. Experimentos numéricos também foram realizados buscando o melhor leiaute na macroescala, na microescala, ou em ambas de forma acoplada, apresentando-se as discussões correspondentes. Conjunto de soluções ótimas foram gerados, baseado no método dos pesos, os quais possibilitaram por exemplo a identificação da perda de integridade estrutural em alguns casos otimizados. Foram obtidas estruturas com valores de separação entre duas frequências consecutivas muito maiores do que nas topologias não otimizadas. Por exemplo quando da otimização utilizando microestrutura única com dois materiais, a maximização do intervalo entre a terceira e a segunda frequências naturais supera em aproximadamente 520% a diferença entre as mesmas frequências na topologia não otimizada. |