Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Lopes, William Prigol |
Orientador(a): |
Borenstein, Denis |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/79671
|
Resumo: |
O escalonamento de veículos para múltiplas garagens é um problema clássico da Pesquisa Operacional de grande relevância à otimização da malha de transportes, de forma a buscar a melhor alocação dos recursos disponíveis. O problema é conhecido por ser do tipo NP-hard, e portanto a sua solução para grandes instâncias é realizada por heurísticas. Este trabalho aborda o desenvolvimento de uma heurística simples e eficiente para solucionar o MDVSP, buscando através da redução de possibilidades de viagens, pela retirada de viagens com baixas chances de pertencer a solução ótima reduzir a complexidade da rede. O problema reduzido, é então resolvido pela técnica de geração de colunas truncado e modificado, para resolver o problema de forma aceitável, encontrando soluções com bom compromisso entre tempo de execução e valor da função objetivo. A geração de colunas foi testada e validada através de comparações com trabalhos similares, enquanto que, cada técnica de redução de espaço de estados (de forma conjunta e individual) foram validados através da comparação com os resultados validados da geração de colunas modificada. A heurística mostrou uma melhoria considerável por meio da otimização do tempo de resolução, sem prejudicar os resultados de melhor valor, ficando com uma diferença máxima de 1% em comparação com os valores obtidos com geração de colunas. Se a redução for usada parcialmente, os tempos de solução podem ser reduzidos mais de sete vezes, com um pequeno incremento no valor da função objetivo. Pelas validações e experimentos realizados, pode-se afirmar que a heurística tem potencial para ser utilizada em problemas do mundo real, bem como servir como parte da solução de problemas correlatos mais complexos, como o crew scheduling, o disruption management e o escalonamento em tempo real. |