Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Quevedo, Renata Pacheco |
Orientador(a): |
Guasselli, Laurindo Antônio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Palavras-chave em Espanhol: |
|
Link de acesso: |
http://hdl.handle.net/10183/194324
|
Resumo: |
Os movimentos de massa são fenômenos naturais que, ao atingir um conjunto social, pode vir a causar danos e prejuízos. No Brasil, foram os principais desencadeantes de desastres com registro de óbitos entre os anos de 1991 e 2012. Nesse sentido, o mapeamento de áreas suscetíveis a movimentos de massa atua como uma importante ferramenta para os gestores locais, a fim de localizar as áreas mais suscetíveis e a pensar estratégias para mitigar riscos. As redes neurais artificiais (RNA) e o Random Forest (RF) se destacam na modelagem e mapeamento de suscetibilidade por sua elevada acurácia, capacidade de aprendizagem e generalização dos resultados. Assim, este estudo teve como objetivo analisar diferentes técnicas para modelar e mapear áreas suscetíveis a movimentos de massa na Bacia Hidrográfica do Rio Rolante. Foram utilizados RNA e RF, considerando como dados de entrada sete atributos do terreno extraídos dos modelos digitais de elevação (MDE) ALOS-PALSAR (AP) e ASTER (AS): elevação, declividade, curvaturas longitudinal e vertical, relevo sombreado, fator LS e profundidade do vale. As amostras foram compostas de áreas de ocorrência e de não ocorrência de movimentos de massa. Amostras de não ocorrência foram obtidas a partir de duas áreas amostrais distintas (restritiva/abrangente) e de ocorrência foram extraídas por elaboração de inventário de cicatrizes. Foram realizados processos de reamostragem do conjunto de treinamento, a fim de diminuir o tempo e a exigência de capacidade do processamento. De modo geral, os atributos do terreno que apresentaram maior importância foram: elevação, declividade, fator LS e profundidade do vale. Em contrapartida, os menos relevantes foram as curvaturas. Ressalta-se que quando há dois parâmetros com informações similares, como declividade e fator LS, a tendência é que um apresente maior importância, enquanto o outro apresente um valor menor de relevância. Foi observado que a restrição de área para coleta de amostras aleatórias de não ocorrência pode afetar a capacidade de generalização do modelo. Pode-se concluir que a redução do conjunto amostral de treinamento diminui o tempo de processamento, sem interferir significativamente na acurácia. Todas as configurações de modelos resultaram em acurácias entre 0,88 e 0,94, demonstrando que os modelos RNA e RF, combinados com os MDEs AP e AS, atendem ao objetivo de identificar áreas suscetíveis a movimentos de massa. |