Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Szinvelski, Charles Rogério Paveglio |
Orientador(a): |
Vilhena, Marco Tullio Menna Barreto de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/5191
|
Resumo: |
Neste trabalho é desenvolvida uma solução semi-analítica para a Equação de Langevin assintótica (Equação de Deslocamento Aleatório) aplicada à dispersão de poluentes na Camada Limite Convectiva (CLC). A solução tem como ponto de partida uma equação diferencial de primeira ordem para o deslocamento aleatório, sobre a qual é aplicado o Método Iterativo de Picard. O novo modelo é parametrizado por um coeficiente de difusão obtido a partir da Teoria de Difusão Estatística de Taylor e de um modelo para o espectro de turbulência, assumindo a supersposição linear dos efeitos de turbulência térmica e mecânica. A avaliação do modelo é realizada através da comparação com dados de concentração medidos durante o experimento de dispersão de Copenhagen e com resultados obtidos por outros quatro modelos: modelo de partículas estocástico para velocidade aleatória (Modelo de Langevin), solução analítica da equação difusão-advecção, solução numérica da equação difusão-advecção e modelo Gaussiano. Uma análise estatística revela que o modelo proposto simula satisfatoriamente os valores de concentração observados e apresenta boa concordância com os resultados dos outros modelos de dispersão. Além disso, a solução através do Método Iterativo de Picard pode apresentar algumas vantagem em relação ao método clássico de solução. |