Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida

Detalhes bibliográficos
Ano de defesa: 1994
Autor(a) principal: Rosa, Sergio Ivan Viademonte da
Orientador(a): Leao, Beatriz de Faria, Hoppen, Norberto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/148959
Resumo: O presente trabalho descreve a aplicação de um modelo híbrido para sistemas especialistas em um problema de tomada de decisão, do tipo classificatório. O modelo híbrido para sistemas especialistas, denominado SECOX-HI, foi desenvolvido utilizando-se dois mecanismos de representação de conhecimento. O conhecimento é representado por um conjunto de estruturas de dados relacionais e por redes neurais. As estruturas de dados relacionais permitem uma representação flexível e compreensível do conhecimento do domínio, enquanto que as redes neurais possibilitam a automação da aquisição de conhecimento, a partir de uma base de casos, e a implementação do aprendizado indutivo. O modelo de redes neurais utilizado foi o Modelo Neural Combinatório (MNC), capaz de realizar o aprendizado heurístico através de reconhecimento de padrões observados. A metodologia de construção de grafos de conhecimento foi utilizada para capturar o conhecimento dos especialistas sobre o domínio da aplicação. Adicionalmente, os conceitos da lógica nebulosa foram empregados para modelar as variáveis nebulosas do domínio da aplicação, bem como para definir a função de pertinência dos conjuntos nebulosos relacionados a essas variáveis. A metodologia de aquisição de conhecimento e a fase de engenharia de conhecimento são detalhadas no trabalho, assim como a determinação das variáveis nebulosas e os conjuntos nebulosos associados. O modelo híbrido para sistemas especialistas, SECOX-HI, foi aplicado no problema de detecção de regime de operação do reservatório da usina hidroelétrica de Passo Real, no sistema hidroelétrico Jacuí, na companhia estadual de energia elétrica do Estado do Rio Grande do Sul (CEEE). Para a validação do SECOX-HI, montaram-se três versões da base de conhecimento. A primeira versão, Bl, contém os casos de ocorrências históricas levantados no centro de operações do sistema. A segunda versão, B2, foi montada a partir dos grafos de conhecimento colhidos dos especialistas. A terceira versão da base de conhecimento, B3, constituí-se numa base híbrida, formada por porções das versões Bl e B2. Também, para efeito de validação do sistema, foi montada uma base de testes. A base de testes é composta por 30 ocorrências, aleatóriamente selecionadas. A versão Bl do sistema concluiu corretamente 29 (96. 7 %) dos 30 diagnósticos da base de testes. A versão B2 do sistema concluiu corretamente 22 (73.4 %) dos 30 casos apresentados, e a versão híbrida do sistema, B3, concluiu corretamente 27 (90 %) dos 30 casos apresentados. Pelos resultados obtidos na validação do modelo, pode-se verificar a eficiência do formalismo híbrido na representação do conhecimento; a eficiência e aplicabilidade de modelos de redes neurais para a implementação de métodos de aquisição automática de conhecimento, principalmente quando existe um banco de casos disponível para o treinamento da rede neural; a aplicabilidade da tecnologia de sistemas especialistas no suporte à decisão. Como principais contribuições deste trabalho, pode-se destacar a i aplicação da lógica nebulosa numa situação real, para a interpretação e modelagem de conceitos imprecisos; a utilização e validação de uma metodologia para aquisição de conhecimento, baseada em grafos; a especificação e aplicação de um modelo computacional que incorpora a explicitação automática de conhecimento, via registros de ocorrências históricas, e o aprendizado indutivo, pelo refinamento do conhecimento armazenado nas redes neurais.