Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Zahn, Maurício |
Orientador(a): |
Bonorino, Leonardo Prange |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/4361
|
Resumo: |
Este trabalho tem por objetivo estudar a regularidade de soluções de Equações Diferenciais Parciais Elípticas da forma Lu = f, para f 2 Lp(), onde p > 1. Para isto, usamos a Decomposição de Calderon-Zygmund e um resultado que é consequência deste, o Teorema da Interpolação de Marcinkiewicz. Além disso, usando quocientes-diferença provamos a regularidade das soluções para o caso p = 2 e L = ¡¢ de uma forma alternativa. |