Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Almeida, Igor Rodrigues de |
Orientador(a): |
Jung, Claudio Rosito |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/109225
|
Resumo: |
Este trabalho apresenta um método para detectar mudança de comportamento em multidões humanas baseado em histogramas de velocidade e orientação em coordenadas de mundo. Uma combinação de remoção de fundo e fluxo óptico é usada para extrair o movimento global a cada quadro do vídeo, descartando pequenos vetores de movimento devido artefatos como ruído, pixels de fundo não estacionários e problemas de compressão. Usando uma câmera calibrada, o movimento global pode ser estimado, e é usado para construir um histograma 2D contendo informações de velocidade e direção para todos os quadros. Cada quadro é comparado com um conjunto de quadros anteriores usando uma métrica de comparação de histogramas, resultando em um vetor de similaridade. Este vetor é então utilizado para determinar mudanças no comportamento da multidão, permitindo também uma classificação baseada na natureza da mudança no tempo: mudanças de curto ou longo prazo. Uma extensão do método apresentado é proposta utilizando técnicas de agrupamento para identificar diferentes grupos da cena, em seguida, aplicar o método de detecção em cada grupo. Isso proporciona não apenas detectar, mas também localizar a mudança de comportamento. O método foi testado em conjuntos de dados públicos disponíveis que envolvem cenários lotados. |