Análise do desempenho de classificadores para o mapeamento de cobertura do solo em regiões de floresta tropical: estudo de caso do município de Tefé - AM

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Schwartzman, Luiz Fernando Guimarães
Orientador(a): Saldanha, Dejanira Luderitz
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/170233
Resumo: A Amazônia é a maior floresta tropical do mundo e desempenha papel fundamental na regulação climática do continente sul-americano. A expansão de atividades antrópicas ocorridas na Amazônia nos últimos 70 anos provocou mudanças nos padrões de cobertura do solo na região que levaram ao surgimento de diversas políticas de conservação em nível nacional e internacional. Uma das principais técnicas para o monitoramento e acompanhamento do desenvolvimento dessas políticas são as técnicas fornecidas pelo sensoriamento remoto. Esse trabalho tem por objetivo avaliar o desempenho de três classificadores de imagens digitais (Mínima Distância Euclidiana, Máxima Verrosimilhança e Extration and Classification of Homogeneous Objects) na região central da Amazônia brasileira. Foram utilizadas duas abordagens para realizar as classificações, na primeira os classificadores foram aplicados sobre uma imagem do satélite Landsat - 8 que teve seus números digitais convertidos para valores de refletância e na segunda abordagem os classificadores foram aplicados sobre imagens fração resultantes da aplicação do modelo linear de mistura espectral na imagem do Landsat - 8. Para avaliar os desempenho dos classificadores e das abordagens propostas aplicou-se uma matriz de confusão e foi calculado o índice Kappa para cada um dos resultados obtidos. Os resultados mostraram que o Máxima verossimilhança apresentou o melhor desempenho nas duas abordagem seguido pelo ECHO com resultados próximos. O Mínima Distância teve o pior desempenho nas duas abordagem. Os resultados também indicaram que a redução da dimensionalidade dos dados provocadas pelo modelo linear de mistura espectral foi capaz de melhorar o desempenho apenas do ECHO.