Non degenerate anisotropic green's function for 3D magneto-electro-elasticity and bem shape sensitivity framework for 3D contact in anisotropic elasticity

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Ubessi, Cristiano João Brizzi
Orientador(a): Marczak, Rogerio Jose
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/201386
Resumo: A primeira parte da tese apresenta uma nova expressão para a solução fundamental Magneto-Eletro-Elástica explícita em termos de autovalores de Stroh, bem definida para autovalores repetidos, e exata. Em seguida, uma série de Fourier dupla é utilizada como uma forma rápida e robusta para avaliar a solução fundamental e as suas derivadas. As expressões recém-desenvolvidas permitem calcular os coeficientes de Fourier para qualquer simetria ou anisotropia de material, o que é feito apenas uma vez para um dado material. Diversos resultados são apresentados para materiais elásticos, piezoelétricos e magneto-eletro-elásticos. A segunda parte desta tese apresenta uma formulação completa para análise de sensibilidade em estruturas elasticas anisotrópicas baseada nestas funções de Green recém apresentadas, incluindo condições de contato. A sensibilidade à parâmetros é avaliada utilizando o método do incremento complexo, método extremamente robusto, similar a diferenciação finita (FD), mas independente do tamanho do incremento. Problemas de contato de Hertz e não Hertzianos foram resolvidos, assim como um estudo de aplicação de uma palheta de turbinas a gás. Foi avaliada a sensibilidade à variação de forma das tensões de contato, tensões cisalhantes máximas e também nas tensões equivalentes de Von Mises, em diferentes materiais anisotrópicos. Os resultados mostraram boa correlação com soluções analíticas assim como em outros trabalhos da literatura. Quando comparado com FD, que não obteve convergência em um dos exemplos, o método CS demonstrou excelente estabilidade e precisão para uma larga faixa de tamanhos de incremento.