Study of electrical properties of 2- and 3- dimensional carbon nanotubes networks

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Andrade, Mônica Jung de
Orientador(a): Peigney, Alain, Estournès, Claude, Bergmann, Carlos Perez
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/28778
Resumo: Des réseaux de nanotubes de carbone (CNTs) en deux ou trois dimensions (2D- et 3DCNTNs) ont été préparés respectivement sur substrat de silice amorphe et dans une matrice silice. Plusieurs types de CNTs (mono-, double- et multi-parois, respectivement SWCNTs, DWCNTs et MWCNTs) ont été caractérisés par microscopie électronique à transmission, spectroscopie Raman et analyse élémentaire du carbone, et leurs aptitudes à former un réseau percolant ont été comparées par mesure de la conductivité électrique de suspensions dynamiques de ces CNTs dans le chloroforme. La conductivité des suspensions de SWCNTs et de DWCNTs obéit à la loi de puissance de la théorie de percolation, avec un exposant proche de la valeur théorique d'un réseau 3D. Celle des suspensions de SWCNTs présentent une conductivité normalisée maximale (3.08 S.cm2/g) tandis que celle des suspensions de DWCNTs présente le plus faible seuil de percolation (0.002-0.06 vol.%) ce qui a conduit à choisir les SWCNTs pour la préparation des 2D-CNTNs et les DWCNTs pour la préparation des nanocomposites CNT-silice (3D CNTNs). Les 2D-CNTNs ont été préparés par dépôt de suspensions aqueuses de SWCNTs contenant du dodecyl sulfate de sodium sur de la silice amorphe, par quatre techniques différentes: trempage, filtration, spray et dépôt électrophorétique. Les 2D-CNTNs forment un réseau percolant dont la conductivité électrique obéit à la loi de puissance, avec un exposant d'environ 1.29, ce qui en en bon accord avec les prédictions théoriques. Les dépôts effectués par trempage et les dépôts électrophorétiques conduisent aux films les plus lisses et peuvent constituer une option intéressante pour des applications dans les cellules solaires. La conductance de surface et la transparence obtenues dans l'UV laissent espérer des applications possibles dans les écrans d'affichage, les écrans tactiles, les tubes cathodiques et les films destinés à dissiper les charges électrostatiques. Les nanocomposites CNT-silice (3D-CNTNs) ont été préparés par sol-gel, en utilisant des DWCNTs qui furent d'abord soumis à un traitement doux de fonctionnalisation, leur dispersion étant réalisée par sonication avec une sonde. Les matériaux ont été ensuite complétement densifiés par "spark-plasma sintering". Les états de dispersion des CNTs ont été évalués par microscopie électronique à balayage à émission de champ et corrélé aux propriétés lectriques. La comparaison de deux variantes de la méthode de préparation (i.e.: DWCNT séchés ou non séchés après leur functionnalisation) a conduit à une bonne corrélation entre les états de dispersion (présence et taille des aggregats de CNTs) et les seuils de percolation. Pour la voie sèche, la percolation intervient pour seulement 0.35 vol.% DWCNT, ce qui est plus faible que les valeurs publiés pour les nanocomposites CNT-silice. Pour la voie humide, le matériau le plus conducteur présente une conductivité électrique (1.56 S/cm) plus élevée que celles publiés pour des matériaux similaires. Bien que l'état de dispersion des CNTs puisse encore être amélioré, la conductivité électrique obtenue pour ces nanocomposites est déjà suffisamment élevée pour leur utilisation pour évacuer les charges électrostatiques ou comme éléments chauffants.