Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Belloli, Tássia Fraga |
Orientador(a): |
Kuplich, Tatiana Mora |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/202034
|
Resumo: |
Diante do cenário de mudanças climáticas, as Áreas Úmidas (AUs) tem se destacado por atuarem substancialmente como sumidouro de CO2 atmosférico a partir de sua fixação na biomassa vegetal e nas turfeiras. No entanto, a degradação destes ecossistemas faz com que as AUs passem de ecossistemas fixadores de CO2 para fonte de gases de efeito estufa. Desse modo, quantificar e monitorar biomassa é de grande importância para preservar os estoques de carbono, bem como estimativas acuradas de carbono podem contribuir para preservação, prevenção de perdas e restauração destes ecossistemas. Este estudo teve como objetivo principal estimar biomassa vegetal e estoques de carbono orgânico da espécie Scirpus giganteus, no Banhado Grande – RS, a partir de dados espectrais e dados de campo. Para tanto, utilizou-se dois métodos: i) delimitação da área da espécie por Analise de Imagem Baseada em Objetos Geográficos (GEOBIA) e mineração de dados Ramdon Forest, integrando imagens dos sensores Sentinel 1 e 2A; e ii) análise de correlação e regressão linear a partir de dados de campo e espectrais dos sensores PlanetScope e Sentinel-2A. Coletas de vegetação foram realizadas em área experimental no Banhado Grande, município de Glorinha, durante um ciclo anual. Na GEOBIA foi utilizado o método de mineração de dados Random Forest (RF) para classificação de espécies de vegetação no Banhado Grande, visando delimitar a área ocupada pela espécie S.giganteus e estimar os estoques das variáveis biofísicas para sua área total de cobertura. As equações de regressão envolveram como variáveis dependentes (y): a biomassa e o carbono orgânico vegetal, obtidos diretamente nas amostras, e como variáveis independentes (x) as bandas espectrais e os índices de vegetação (IV). O tratamento estatístico envolveu a análise da matriz de correlação (r) entre as variáveis x e y; a análise de regressão linear simples e múltipla, com as seguintes estatísticas: R², R²aj., EQM, CV%, DP e análise de resíduos. Como resultados, a classificação GEOBIA alcançou uma acurácia de 91,3% e de 91% para a classe Emergente, correspondente à área da S.gigantes (1.507 ha). Considerando os valores médios, obteve-se um estoque de biomassa de 8,63 ton/ha e 3,54 ton/ha de carbono orgânico para a área da classe. Os índices de vegetação foram mais bem correlacionados e preferíveis como variáveis preditoras nos modelos de regressão. O modelo mais acurado ocorreu com dados do sensor PlanetScope e IV sPRI, a partir de uma regressão linear simples. Gerou uma estimativa média de 656.33 g/m² de biomassa (EQM =157,10 g/m², 23,8% da biomassa média observada) e de 270.81 g/m² de carbono (EQM =62,77 g/m², 23% do carbono médio observado). Além de proverem estimativas atuais das variáveis biofísicas, com relativa confiabilidade, o uso destas metodologias a partir de dados dos sensores ópticos e SAR possibilitam minimizar os esforços de campo, mostrando-se especialmente úteis para monitoramento e inventário dos estoques de carbono. Contribuem desse modo, com o reconhecimento da função ambiental do Banhado Grande como ecossistema de carbono azul. |