Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Lemos, Larissa Domingues |
Orientador(a): |
França, Francis Henrique Ramos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/218192
|
Resumo: |
A determinação precisa do fluxo de calor radiativo emitido por chamas turbulentas envolve a modelagem das interações turbulência-radiação (TRI). Este trabalho apresenta a modelagem computacional de um conjunto de chamas difusivas turbulentas e analisa o impacto da modelagem da interação entre turbulência e radiação na determinação da transferência radiativa. O combustível utilizado é gás natural diluído em CO2 e H2. A cinética química é resolvida com um modelo baseado no conceito de flamelets, o steady laminar diffusion flamelet (SLDF). Para incorporar os efeitos da turbulência em flamelets laminares utiliza-se o método de funções densidade de probabilidade (PDFs). O fluxo de calor radiativo é calculado com o método de discretização espacial de ordenadas discretas enquanto o modelo da somaponderada-de-gases-cinza (WSGG) é empregado para a integração espectral. A turbulência é resolvida através da modelagem RANS, utilizando k-ε padrão. Duas metodologias TRI são comparadas. A primeira baseia-se na autocorrelação da temperatura e correlação entre coeficiente de absorção e temperatura, sendo o coeficiente de absorção modelado como dependente apenas da temperatura local. Na segunda abordagem, também baseada na autocorrelação da temperatura e correlação entre coeficiente de absorção e temperatura, o coeficiente de absorção é calculado considerando a dependência da temperatura local e da concentração das espécies participantes. Três soluções numéricas, considerando também o caso em que são negligenciados os efeitos TRI, são comparadas com dados experimentais para o fluxo de calor radiativo. A variância de temperatura é calculada de duas formas, na primeira utiliza-se uma equação de transporte e na segunda através do método PDF. A solução é obtida com o código ANSYS Fluent acoplado a funções definidas pelo usuário (UDFs) utilizadas para modificações do modelo WSGG e incorporação dos efeitos TRI. Os resultados indicam boa concordância entre os modelos que consideram TRI com os dados experimentais para o fluxo de calor radiativo, especialmente para o modelo que considera o coeficiente de absorção dependente da temperatura e concentrações locais. |