Um estudo sobre processamento adaptativo de sinais utilizando redes neurais

Detalhes bibliográficos
Ano de defesa: 1993
Autor(a) principal: Dorneles, Ricardo Vargas
Orientador(a): Navaux, Philippe Olivier Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
DSP
Link de acesso: http://hdl.handle.net/10183/25180
Resumo: Nos últimos anos muito tem se pesquisado na área de arquiteturas paralelas de computadores, devido ao fato da melhora de desempenho nas arquiteturas sequenciais não estar acompanhando as necessidades crescentes de capacidade de processamento. Entre as arquiteturas paralelas, um grupo que tem recebido especial atenção por parte dos pesquisadores é o de redes neurais. Uma rede neural é uma arquitetura baseada em paralelismo massivo, na interconexão de numerosos elementos simples de processamento segundo uma determinada topologia e com uma regra de aprendizagem. As redes neurais tem tido grande importância na área de reconhecimento de padrões e diversas aplicações em reconhecimento de caracteres, imagem e voz tem sido desenvolvidas. Outra área de aplicação das redes neurais é o processamento de sinais. A característica de adaptabilidade das redes neurais torna-as apropriadas à utilização em aplicações, onde as características do sinal, ou do meio, são variáveis ou não totalmente conhecidas, como filtros adaptativos. O objetivo deste trabalho é mostrar as aplicações de redes neurais nesta área. Na primeira parte do trabalho foram implementadas aplicações de redes neurais à filtragem utilizando diversas topologias e modelos de neurônios. Os modelos implementados são aqui apresentados juntamente com os resultados das simulações. A segunda parte do trabalho consiste na aplicação de um modelo de redes neurais a um problema bem específico, a separação de sinais a partir de diversas combinações destes sinais. A solução implementada foi baseada no algoritmo proposto por Jutten em [JUT 87]. Além da aplicação deste algoritmo, o problema envolve a análise espectral do sinal, e a reconstrução do sinal original a partir de suas componentes, após efetuada a separação. Neste trabalho é efetuado um estudo sobre este algoritmo, é proposta uma alteração para sua aplicação a sinais de voz, e são mostrados os resultados obtidos na aplicação deste sistema à separação de sinais de voz de diversos locutores.