Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Huff, Daniel Denardi |
Orientador(a): |
Campestrini, Lucíola |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/197208
|
Resumo: |
Neste trabalho, um método de controle baseado em dados – o Optimal Controller Identification (OCI) – é estendido para sistemas multivariáveis. Com base em uma única batelada de dados de entrada e de saída coletados da planta, um controlador de estrutura fixa é identificado sem usar um modelo para o processo, através da adaptação do método de identificação pelo erro de predição para o problema de projeto do controlador. Apesar de a formulação MIMO (multiple-input multiple-output) ser obtida a partir da versão SISO (single-input single-output) de uma maneira natural, a solução do problema de otimização é consideravelmente mais complexa devido à estrutura especial que a inversa do controlador assume no casoMIMO. Uma versão flexível do método OCI também é desenvolvida para lidar com sistemas de fase não-mínima (FNM), sem o conhecimento a priori do zero de transmissão de FNM, o qual é identificado em paralelo com os parâmetros do controlador. Uma abordagem similar já existe para o método VRFT (Virtual Reference Feedback Tuning) para modelos de referência diagonais. Aqui, considera-se estruturas de modelo de referência não apenas diagonais mas mais genéricas. Resultados de simulação assim como um experimento em uma planta de nível validam a metodologia apresentada, além de comparar o OCI com o método VRFT. |