Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Tognon, Leandro |
Orientador(a): |
Lorini, Flavio Jose |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/194351
|
Resumo: |
Nos últimos anos, a utilização de robôs na indústria vem crescendo significativamente. Cada vez mais as empresas utilizam os robôs em tarefas repetitivas que são previamente programadas, executando sempre o mesmo movimento, sem nenhuma flexibilidade. Para resolver essa falta de flexibilidade, sistemas de visão computacional tem sido desenvolvidos para trabalhar em conjunto com robôs, dando aos mesmos a capacidade de observar a área de trabalho através das lentes de uma câmera e, utilizando ferramentas de processamento de imagem, interpretar o que estão “enxergando”, flexibilizando seu uso. Neste trabalho é apresentado um sistema de visão computacional capaz de, através da captura e processamento de imagens digitais, identificar a posição e orientação de vários objetos dispostos aleatoriamente no mesmo plano da área de trabalho. Primeiramente a imagem é capturada por uma câmera e enviada ao software MATLAB®, onde é realizada a limiarização dos mesmos, afim de obter-se uma imagem final com os objetos segmentados e identificados. Outros processos como dilatação morfológica das imagens e rotulagem de objetos são utilizados nessa etapa. A partir da imagem segmentada, utilizando uma função do MATLAB® chamada regionprops, são encontradas as posições dos centros de massa de cada objeto, e utilizando uma rede neural artificial determina-se a orientação dos mesmos. A rede neural utilizada possui arquitetura multi-camada, com uma camada escondida e alimentação para frente (feed forward), treinada previamente com várias imagens de peças semelhantes às que seriam utilizadas para os testes. As coordenadas obtidas são enviadas ao controlador de um manipulador robótico, que realiza a coleta dessas peças e as coloca em outro local previamente definido. Esse sistema de visão acrescenta ao robô a capacidade de coletar peças dispostas aleatoriamente em um plano, sem a necessidade prévia de informar suas coordenadas. O método proposto foi testado utilizando algumas imagens que simulam uma situação real em um ambiente industrial, com várias peças dispostas de forma aleatória em um plano, onde foram comparados os valores para a posição e orientação encontrados pelo método com os valores reais. Também foi avaliado o tempo de processamento total necessário para obter as coordenadas e movimentar as peças. Os testes mostraram que o método apresenta resultados adequados e robustez nas respostas para diferentes cenários. |