Um estudo sobre a performance de aplicações big data em ambientes de névoa e de borda

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Silva Junior, Jorge Ximendes
Orientador(a): Geyer, Claudio Fernando Resin
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/193992
Resumo: O uso de processadores ARM para o processamento Big Data já é objeto de estudo de vários autores. Entretanto, a grande maioria desses autores leva em conta o processamento em lotes (batch) utilizando o framework Hadoop. Além disso, poucos trabalhos comparam o desempenho entre diferentes processadores ARM. Não há uma comparação de como diferentes arquiteturas influenciam na execução de aplicações Big Data. Desse modo, percebe-se a necessidade de um estudo que avalie o desempenho dos frameworks (e aplicações Big Data) sob ambos os modelos de processamento (em lotes e em tempo real). Além disso, torna-se importante avaliar o impacto de diferentes arquiteturas ARM sobre os frameworks e aplicações Big Data. Assim, esse trabalho apresenta uma avaliação experimental de processadores ARM para processamento Big Data. Os dois principais modelos de processamento Big Data foram avaliados neste trabalho (processamento em lotes e processamento em tempo real). Assim, como os frameworks Hadoop, Spark e Flink. Como representantes ARM foram avaliados a arquitetura ARMv7 com processador Cortex-A7 e a arquitetura ARMv8 com os processadores Cortex-A57 e Denver2. O benchmark utilizado neste trabalho foi o Hibench que apresenta aplicações que utilizam ambos os modelos de processamento e que suportam os frameworks citados. Os resultados mostraram que é possível utilizar processadores ARM no processamento Big Data e que a escolha da arquitetura e do processador a serem utilizados passa pelas necessidades da aplicação a ser processada, assim, como pelas características do ambiente de execução a ser construído.