Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Holsbach, Nicole |
Orientador(a): |
Fogliatto, Flavio Sanson |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/76183
|
Resumo: |
A presente dissertação propõe métodos para mineração de dados para diagnóstico de câncer de mama (CM) baseado na seleção de variáveis. Partindo-se de uma revisão sistemática, sugere-se um método para a seleção de variáveis para classificação das observações (pacientes) em duas classes de resultado, benigno ou maligno, baseado na análise citopatológica de amostras de célula da mama de pacientes. O método de seleção de variáveis para categorização das observações baseia-se em 4 passos operacionais: (i) dividir o banco de dados original em porções de treino e de teste, e aplicar a ACP (Análise de Componentes Principais) na porção de treino; (ii) gerar índices de importância das variáveis baseados nos pesos da ACP e na percentagem da variância explicada pelos componentes retidos; (iii) classificar a porção de treino utilizando as técnicas KVP (k-vizinhos mais próximos) ou AD (Análise Discriminante). Em seguida eliminar a variável com o menor índice de importância, classificar o banco de dados novamente e calcular a acurácia de classificação; continuar tal processo iterativo até restar uma variável; e (iv) selecionar o subgrupo de variáveis responsável pela máxima acurácia de classificação e classificar a porção de teste utilizando tais variáveis. Quando aplicado ao WBCD (Wisconsin Breast Cancer Database), o método proposto apresentou acurácia média de 97,77%, retendo uma média de 5,8 variáveis. Uma variação do método é proposta, utilizando quatro diferentes tipos de kernels polinomiais para remapear o banco de dados original; os passos (i) a (iv) acima descritos são então aplicados aos kernels propostos. Ao aplicar-se a variação do método ao WBCD, obteve-se acurácia média de 98,09%, retendo uma média de 17,24 variáveis de um total de 54 variáveis geradas pelo kernel polinomial recomendado. O método proposto pode auxiliar o médico na elaboração do diagnóstico, selecionando um menor número de variáveis (envolvidas na tomada de decisão) com a maior acurácia, obtendo assim o maior acerto possível. |