Memetic networks : problem-solving with social network models

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Araújo, Ricardo Matsumura de
Orientador(a): Lamb, Luis da Cunha
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/25515
Resumo: Sistemas sociais têm se tornado cada vez mais relevantes para a Ciência da Computação em geral e para a Inteligência Artificial em particular. Tal interesse iniciou-se pela necessidade de analisar-se sistemas baseados em agentes onde a interação social destes agentes pode ter um impacto no resultado esperado. Uma tendência mais recente vem da área de Processamento Social de Informações, Computação Social e outros métodos crowdsourced, que são caracterizados por sistemas de computação compostos de pessoas reais, com um forte componente social na interação entre estas. O conjunto de todas interações sociais e os atores envolvidos compõem uma rede social, que pode ter uma forte influência em o quão eficaz ou eficiente o sistema pode ser. Nesta tese, exploramos o papel de estruturas de redes em sistemas sociais que visam a solução de problemas. Enquadramos a solução de problemas como uma busca por soluções válidas em um espaço de estados e propomos um modelo - a Rede Memética - que é capaz de realizar busca utilizando troca de informações (memes) entre atores interagindo em uma rede social. Tal modelo é aplicado a uma variedade de cenários e mostramos como a presença da rede social pode melhorar a capacidade do sistema em encontrar soluções. Adicionalmente, relacionamos propriedades específicas de diversas redes bem conhecidas ao comportamento observado para os algoritmos propostos, resultando em um conjunto de regras gerais que podem melhorar o desempenho de tais sistemas sociais. Por fim, mostramos que os algoritmos propostos são competitivos com técnicas tradicionais de busca heurística em diversos cenários.