Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Cardoso, Natali Farias |
Orientador(a): |
Lima, Éder Cláudio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/63143
|
Resumo: |
Os efluentes têxteis, quando lançados nos corpos hídricos, reduzem a penetração da luz solar prejudicando os processos de fotossíntese. Além disso, os corantes têm sido apontados como substâncias potencialmente tóxicas. Em geral, os processos de remoção estão fundamentados em sistemas físicoquímicos seguidos de tratamento biológico. O processo de adsorção, além de apresentar alta eficiência de remoção, ainda apresenta como vantagem a facilidade de operação e a possibilidade de utilização de adsorventes de baixo custo. Neste trabalho foram utilizados quatro novos adsorventes alternativos para remoção dos corantes têxteis presentes em soluções aquosas ou efluentes sintéticos. O estudo foi segmentado em três etapas de trabalho. Para a remoção dos corantes RR-194 e DB-53, RB-5 e RO-16 de soluções aquosas, foram testados como adsorventes os seguintes materiais: casca de cupuaçu (CS), talo do açaí (AS) e talo do açaí acidificado (AAS), respectivamente. Para a remoção do corante RR- 120 do efluente sintético, foi avaliada a capacidade adsorvente da microalga verde azulada S. platensis (SP). Com o intuito de comparar a eficiência de remoção da microalga, os testes também foram realizados com carvão ativo comercial. A dessorção do corante RR-120 e a reutilização da microalga foi analisada. Os biossorventes foram caracterizados por espectroscopia FTIR, MEV e curvas de adsorção e dessorção de nitrogênio. Foram realizados estudos cinéticos e de equilíbrio para os sistemas. Para avaliar a capacidade de remoção do corante RR-120 da microalga S. platensis e do carvão ativo comercial, foram analisados os aspectos termodinâmicos do processo. Os estudos utilizando a casca do cupuaçu, o talo do açaí, o talo do açaí acidificado e a microalga S. platensis mostraram que os novos adsorventes são ótimas alternativas de baixo custo para remoção dos corantes têxteis RR-194 e DB- 53, RB-5 e RO-16, e RR-120. Todos os adsorventes apresentaram elevada eficiência de remoção. Os experimentos de dessorção utilizando solução de NaOH 0,50 mol.L-1demonstraram que a microalga S. platensis pode ser reutilizada, com pouca perda de eficiência de remoção, diferentemente do carvão ativo, que, apesar de apresentar uma boa eficiência de remoção, forneceu uma porcentagem de dessorção de cerca de 13%, impossibilitando sua reutilização. A caracterização dos biossorventes mostrou que os grupos hidroxila presentes nos compostos fenólicos e alcoólicos e os carboxilatos devem participar efetivamente do mecanismo de biossorção. Os resultados obtidos com os biossorventes CS, AS e AAS foram mais bem representados pelo modelo de ordem fracionária de Avrami, enquanto que o biossorvente SP foi adequadamente ajustado pelo modelo de ordem geral. O modelo de difusão intra-partícula sugere que a biossorção ocorreu em múltiplas etapas. O equilíbrio foi atingido após 10 e 4 horas de contato dos biossorventes AS e AAS, respectivamente, com os corantes RB-5 e RO-16. O tempo necessário para atingir o equilíbrio entre os corantes RR-194 e DB-53 e o biossorvente CS foi de 8 e 18 horas, respectivamente, enquanto que, para remoção do corante RR-120 com o adsorvente SP e AC, foram necessárias 3 horas. O modelo de isoterma de Sips foi o que melhor representou os sistemas de adsorção utilizando CS, AS e AAS como biossorventes. Para o carvão ativo e para o biossorvente SP, o modelo que melhor se ajustou aos dados experimentais foi o de Liu. A capacidade máxima de adsorção dos corantes RB-5 e RO-16 foi de 52,3 mg.g-1 e 61,3 mg.g-1, respectivamente, utilizando AS como biossorvente e 72,3 mg.g-1 e 156 mg.g-1, respectivamente, utilizando AAS como biossorvente. A capacidade máxima de adsorção de RR-194 e DB-53 foi de 64,1 mg.g-1 e 37,5 mg.g-1, respectivamente, utilizando CS como biossorvente, enquanto que a capacidade máxima de adsorção do corante RR-120 foi de 482,2 mg.g-1 e 267,2 mg.g-1, respectivamente, utilizando SP e AC como adsorvente. |