Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Bertotto, Renata de Carvalho Teles |
Orientador(a): |
Tessaro, Isabel Cristina,
Marcilio, Nilson Romeu |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/131036
|
Resumo: |
O uso de sulfato de alumínio como coagulante no tratamento convencional de água é uma prática comum. No entanto, diversos estudos recentes vêm mostrando que o alumínio residual, presente na água tratada, pode estar diretamente ligado ao mal de Alzheimer. Uma alternativa para substituir o alumínio no tratamento de águas é a utilização de coagulantes naturais, biodegradáveis e atóxicos, como por exemplo, quitosana, Moringa oleifera e os produtos derivados de taninos. Simultaneamente, existe a busca por tecnologias mais eficientes para auxiliar o tratamento de água, entre estas tecnologias destacam-se os processos de separação com membranas, mais especificamente a microfiltração (MF) e a ultrafiltração (UF). Neste contexto, o presente trabalho tem como objetivo avaliar a interação de um derivado de tanino com membranas de MF e UF de diferentes materiais - polietersulfona (PES), fluoreto de polivinilideno (PVDF) e acetato de celulose (CA) - e de diferentes massas molares de corte ou tamanho de poro nominal (0,2 μm, 20 kDa, 100 kDa), utilizando técnicas de caracterização de membranas e testes de permeação. A pressão de operação para a filtração de 4 horas com a solução de Acquapol C1 – 550 ppm, foi de 0,5 bar para as membranas de MF (AC-0,2, PVDF-0,2) e 2 bar para as membranas de UF (AC-20, PES-100, PES-20, PVDF-100), ambas as pressões abaixo da pressão crítica. As membranas foram caracterizadas quanto à morfologia utilizando microscopia eletrônica de varredura, à estrutura química por espectroscopia de infravermelho por transformada de Fourier com amostragem por refletância total atenuada, ao caráter hidrofílico através de medidas de ângulo de contato, à permeância hidráulica e ao desempenho na filtração da solução. As membranas de MF apresentaram estrutura mais porosa e maior permeância hidráulica, enquanto as membranas de UF apresentaram estrutura menos porosa e menor permeância hidráulica. Quanto ao caráter hidrofílico, foi possível verificar que a membrana AC-20 é a mais hidrofílica com um ângulo médio de 62º ±2,2, seguido das membranas AC-0,2, PES-100, PES-20, PVDF-100 e PVDF-0,2 com ângulos médios de 73,4º ±4,6, 77º ±0,8, 78,3º ±0,9, 80,1º ±2,8 e 95,2º ±1,5. No teste de filtração, após 4 horas, o fluxo permeado final médio decresceu na seguinte ordem: PVDF-0,2 - AC-20 > PES-100 > PES-20 - PVDF-100 - AC-0,2. O percentual de fouling decresceu na seguinte ordem: PVDF-0,2 > (AC-0,2 > PES-20 - AC-20 - PES-100) > PVDF-100, sendo a membrana PVDF-100 a que apresentou menor percentual de fouling. Os resultados obtidos neste trabalho comprovaram que os fenômenos de incrustação nas membranas de MF e UF são influenciados tanto pelo tipo de material e massa molar de corte ou tamanho de poro nominal, quanto pelas características das membranas. |