Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Tonel, Giovani |
Orientador(a): |
Secchi, Argimiro Resende,
Trierweiler, Jorge Otávio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/13469
|
Resumo: |
Devido aos constantes avanços computacionais, bem como o desenvolvimento de eficientes métodos para a solução de problemas de otimização não-lineares, tem-se tornado interessante a realização de otimização em tempo real e como conseqüência o uso de estimadores on-line em processos químicos não lineares. Neste sentido, a atualização automática de modelos de processos torna-se interessante permitindo a realização de estimativas em tempo real de variáveis infreqüentemente medidas e/ou imensuráveis e de variáveis estados e parâmetros desconhecidos que são variantes no tempo. Usualmente, a atualização automática de modelos é feita baseado em algumas variáveis secundárias que são medidas on-line, como temperatura, pressão, composição e vazão. Nos estimadores baseados no filtro de Kalman, como o EKF e CEKF, os esforços computacionais são relativamente pequenos, variando de um simples cálculo algébrico de um ganho, por exemplo, o EKF, até a resolução de problema de otimização quadrático, como exemplo o CEKF. Estes pequenos esforços computacionais permitem rápidos resultados com relativa acuracidade, mas estes estimadores baseados no filtro de Kalman podem falhar quando o sistema tem acentuada não-linearidade, por exemplo. De outra maneira, a formulação MHE é capaz de tratar uma vasta gama de sistemas não-lineares, como aqueles que têm inversão do sinal de ganho de acordo com o ponto de operação. No entanto, na formulação MHE tem-se a necessidade de se resolver um problema NLP não convexo com muitas equações de desigualdade e graus de liberdade, e como conseqüência o tempo de processamento torna-se maior que o tempo de amostragem, fazendo impraticável a execução de ações de controle sobre o sistema em tempo real. Assim, é necessário a implementação de eficientes técnicas para resolver de maneira rápida os problemas de otimização dinâmica envolvidos na formulação MHE. Neste trabalho as estratégias seqüencial e simultânea são exploradas, almejando-se a aceleração da solução dos estágios de integração e otimização dinâmica do estimador MHE, permitindo uma ampla avaliação entre o estimador MHE e os estimadores baseados no filtro de Kalman. Os estimadores foram aplicados para sete estudos de caso, como a planta de quatro tanques cilíndricos, o modelo do reator isotérmico com a reação de van de Vusse e o modelo de um CSTR exotérmico instável. A partir dos resultados, as vantagens e desvantagens da formulação via horizonte móvel são discutidas de modo a justificar o elevado esforço empregado na avaliação e projeto deste, comparado com os estimadores EKF e CEKF, quando o sistema tem acentuada não linearidade, incertezas no modelo e distúrbios e/ou ruídos nas medições. |