Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Gonçalves, Luiz Fernando |
Orientador(a): |
Lubaszewski, Marcelo Soares |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/32591
|
Resumo: |
A evolução tecnológica dos sensores, da eletrônica e dos sistemas embarcados melhorou o desempenho, a confiabilidade e a robustez dos sistemas assim como as atividades de manutenção, em especial, as de manutenção proativa. Estes avanços tecnológicos possibilitaram uma nova visão sobre as práticas de manutenção existentes. A expansão das áreas de processamento de sinais e inteligência artificial proporcionou novas abordagens aos sistemas de controle, promovendo a criação de novos modelos de confiabilidade e disponibilidade de equipamentos e sistemas. Além disso, aumentou a precisão no reconhecimento de padrões de falhas, ampliou a avaliação e o diagnóstico de danos em equipamentos e sistemas, e adicionou inteligência aos sistemas de manutenção existentes. Diversas técnicas de processamento de sinais (tais como a transformada de Fourier), de inteligência artificial (as redes neurais artificiais e a lógica nebulosa, por exemplo) e de filtragem adaptativa (os filtros adaptativos, como exemplo) já são utilizadas com sucesso para detectar e prevenir falhas em vários tipos de equipamentos. Os sistemas de manutenção que fazem uso das técnicas de processamento de sinais e inteligência artificial, em conjunto, por exemplo, são conhecidos como sistemas de manutenção inteligente. Através desses sistemas, é possível monitorar as condições físicas, tomar decisões, efetuar ações de manutenção e fornecer diagnósticos precisos de falhas. Este trabalho aborda a implementação de um sistema de manutenção inteligente embarcado que usa a transformada wavelet packet e os mapas auto-organizáveis ou os filtros adaptativos para detectar, classificar e prever falhas em atuadores elétricos. A idéia principal deste trabalho é determinar qual destas ferramentas, mapas auto-organizáveis ou filtros adaptativos, é a mais adequada para o embarque. Espera-se com a implantação embarcada desse sistema de manutenção, por exemplo, evitar falhas nos atuadores e promover uma maior reutilização de peças. |