Análise formal da complexidade de algoritmos genéticos

Detalhes bibliográficos
Ano de defesa: 1998
Autor(a) principal: Aguiar, Marilton Sanchotene de
Orientador(a): Toscani, Laira Vieira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/25941
Resumo: O objetivo do trabalho é estudar a viabilidade de tratar problemas de otimização, considerados intratáveis, através de Algoritmos Genéticos, desenvolvendo critérios para a avaliação qualitativa de um Algoritmo Genético. Dentro deste tema, abordam-se estudos sobre complexidade, classes de problemas, análise e desenvolvimento de algoritmos e Algoritmos Genéticos, este ultimo sendo objeto central do estudo. Como produto do estudo deste tema, é proposto um método de desenvolvimento de Algoritmos Genéticos, utilizando todo o estudo formal de tipos de problemas, desenvolvimento de algoritmos aproximativos e análise da complexidade. O fato de um problema ser teoricamente resolvível por um computador não é suficiente para o problema ser na prática resolvível. Um problema é denominado tratável se no pior caso possui um algoritmo razoavelmente eficiente. E um algoritmo é dito razoavelmente eficiente quando existe um polinômio p tal que para qualquer entrada de tamanho n o algoritmo termina com no máximo p(n) passos [SZW 84]. Já que um polinômio pode ser de ordem bem alta, então um algoritmo de complexidade polinomial pode ser muito ineficiente. Genéticos é que se pode encontrar soluções aproximadas de problemas de grande complexidade computacional mediante um processo de evolução simulada[LAG 96]. Como produto do estudo deste tema, é proposto um método de desenvolvimento de Algoritmos Genéticos com a consciência de qualidade, utilizando todo o estudo formal de tipos de problemas, desenvolvimento de algoritmos aproximativos e análise da complexidade. Uma axiomatização tem o propósito de dar a semântica do algoritmo, ou seja, ela define, formalmente, o funcionamento do algoritmo, mais especificamente das funções e procedimentos do algoritmo. E isto, possibilita ao projetista de algoritmos uma maior segurança no desenvolvimento, porque para provar a correção de um Algoritmo Genético que satisfaça esse modelo só é necessário provar que os procedimentos satisfazem os axiomas. Para ter-se consciência da qualidade de um algoritmo aproximativo, dois fatores são relevantes: a exatidão e a complexidade. Este trabalho levanta os pontos importantes para o estudo da complexidade de um Algoritmo Genético. Infelizmente, são fatores conflitantes, pois quanto maior a exatidão, pior ( mais alta) é a complexidade, e vice-versa. Assim, um estudo da qualidade de um Algoritmo Genético, considerado um algoritmo aproximativo, só estaria completa com a consideração destes dois fatores. Mas, este trabalho proporciona um grande passo em direção do estudo da viabilidade do tratamento de problemas de otimização via Algoritmos Genéticos.