Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Rybarczyk Filho, José Luiz |
Orientador(a): |
Almeida, Rita Maria Cunha de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/31005
|
Resumo: |
A cada dia surgem novas tecnologias que possibilitam aos cientistas medirem a expressão de inúmeros genes em uma única experiência com uma alta rapidez e eficiência. No entanto, ainda não existem muitas metodologias que sirvam para a análise do funcionamento de células e tecidos que possibilitem diagnóstico, prevenção e terapias de doenças. Na presente tese propomos uma metodologia de análise de expressão gênica que mostra diferenças na performance da célula com o passar do tempo, e tem poder de diagnóstico quando uma célula mutada é comparada com uma célula normal. Partimos da ideia de que rotas bioquímicas podem ser representadas por uma rede de interações entre metabólitos, entre os quais muitos deles são proteínas codificadas a partir do genoma. Sendo assim, o funcionamento de uma célula implica em interações que compõem uma rede intricada e complexa. Reorganizamos a lista de genes em uma dimensão e reescrevemos a matriz de interação, sem a criação ou a destruição de interações, buscando correlacionar cada um dos genes com os seus respectivos vizinhos na lista unidimensional. Logo após a reorganização, encontramos módulos funcionais sobre a lista ordenada que são independentes do estado da célula estudada, é possível reconhecer os processos biológicos de cada módulo com o uso de banco de dados específicos. Com base nisto, sobrepondo dados de expressão gênica sobre o ordenamento (transcriptograma), teremos um perfil transcricional de um tecido no ato da medida experimental. Se medirmos a expressão gênica de células provenientes do mesmo tecido em diferentes estágios do ciclo celular podemos seguir as alterações metabólicas ao longo do ciclo celular. Também poderíamos analisar a expressão gênica de um tecido normal com um tecido alterado. Como resultado desta comparação saberíamos quais módulos estão super expressos e os subexpressos em relação ao tecido normal. Publicamos na internet um software que é capaz de reproduzir essas análises e gerar transcriptogramas para análise de expressão gênica. |