Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Mello, Ricardo Noé Bretin de |
Orientador(a): |
Susin, Altamiro Amadeu |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/3583
|
Resumo: |
A representação de funções através da utilização de bases (KERNEL) de representação tem sido fundamental no processamento digital de sinais. A Transformada KARHUNEN-LOÈVE (KLT), também conhecida como Transformada HOTELLING, permite a representação de funções utilizando funções-base formadas pelos autovetores da matriz de correlação do sinal considerado. Nesse aspecto essa transformada fornece uma base ótima, isto é, aquela que proporciona o menor valor de Erro Quadrático Médio entre o sinal reconstruído e o original, para um determinado número de coeficientes. A dificuldade na utilização da KLT está no tempo adicional para calcular os autovetores (base) da matriz de correlação, o que muitas vezes inviabiliza a sua utilização nas aplicações em tempo real. Em muitas aplicações a KLT é utilizada em conjunto com outras transformadas melhorando os resultados destas aplicações. Sendo considerada a transformada ótima no sentido do Erro Quadrático Médio, este trabalho apresenta um estudo da Transformada KARHUNEN-LOÈVE nas aplicações de compressão de imagens bidimensionais estáticas e em tons de cinza, realizando também a comparação desta técnica com outras técnicas (DCT e WAVELET) buscando avaliar os pontos fortes e fracos da utilização da KLT para este tipo de aplicação. Duas técnicas importantes para solucionar o problema de cálculo dos autovalores e autovetores da matriz de correlação (Método de JACOBI e Método QL) são também apresentadas neste trabalho. Os resultados são comparados utilizando a Razão Sinal/Ruído de Pico (PSNR), a Razão de Compressão (CR) e os tempos de processamento (em segundos) para geração dos arquivos compactados. |