Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Braghirolli, Daikelly Iglesias |
Orientador(a): |
Pranke, Patricia Helena Lucas |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/169724
|
Resumo: |
Atualmente, existe uma grande necessidade médica por enxertos vasculares de pequeno calibre (< 6 mm), que possam ser utilizados em cirurgias de reconstrução vascular. Nesse trabalho, dois tipos de biomateriais vasculares foram desenvolvidos pela técnica de electrospinning: biomateriais de policaprolactona (PCL) e biomateriais de poli(carbonato de trimetileno – co – ácido lático) (PTMCLLA). Os biomateriais de PCL foram funcionalizados com heparina e com VEGF (PCL/Hep/VEGF). Os biomateriais de PTMCLLA foram desenvolvidos a partir de três razões de carbonato de trimetileno/ ácido lático: 20/80, 30/70 e 40/60. Os biomateriais de PCL apresentaram taxa de degradação lenta e alta elasticidade. A funcionalização dos biomateriais preveniu a coagulação do sangue e também favoreceu o crescimento de células-tronco mesenquimais (CTMs) e de células progenitoras endoteliais (CPEs) nessas estruturas. A análise de PCR demonstrou que o VEGF adsorvido aos biomateriais não foi suficiente para diferenciar as CTMs em células endoteliais. O cultivo das CPEs sobre os biomateriais aumentou a expressão de VE-caderina e a presença de VEGF nas estruturas manteve o nível de expressão de CD31 e CD34 nessas células. Após essas análises, os biomateriais de PCL/Hep/VEGF foram fabricados em formato tubular. As CPEs foram semeadas no lúmen do biomaterial, através de biorreatores de parede rotatória (BPR), e mantidas em cultivo, por biorreatores de perfusão (BP). O BPR favoreceu a distribuição homogênea das CPEs na parede luminal dos biomateriais enquanto que o BP estimulou seu crescimento e otimizou seu metabolismo energético. Os biomateriais produzidos a partir dos copolímeros de PTMCLLA 30/70 e 40/60 exibiram uma alta flexibilidade. Porém, os biomateriais de PTMCLLA 40/60 tiveram um grande enrugamento. Os biomateriais de PTMCLLA 30/70 suportaram a adesão e o crescimento de CTMs, de CPEs e de células musculares lisas. Os resultados obtidos no presente estudo demonstram que biomateriais de PCL/Hep/VEGF apresentam características físico-químicas compatíveis para o uso vascular. Ainda, previnem a formação de trombos em sua superfície e propiciam o desenvolvimento da camada endotelial em seu lúmen. Os biomateriais de PTMCLLA 30/70 exibem alta flexibilidade e suportam o desenvolvimento de células vasculares e de células-tronco mesenquimais. De acordo com esses resultados, é possível concluir que biomateriais de PCL/Hep/VEGF e de PTMCLLA 30/70 são candidatos promissores para aplicação como enxertos vasculares. |