Uma abordagem semiautomática para identificação de elementos de processo de negócio em texto de linguagem natural

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Ferreira, Renato César Borges
Orientador(a): Thom, Lucinéia Heloisa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/156635
Resumo: Para permitir um efetivo gerenciamento de processos de negócio, o primeiro passo é o desenvolvimento de modelos de processo adequados aos objetivos das organizações. Tais modelos são utilizados para descreverem papéis e responsabilidades dos colaboradores nas organizações. Além disso, a modelagem de processos é de grande importância para documentar, entender e automatizar processos. As organizações, geralmente provêm documentos não estruturados e de difícil entendimento por parte dos analistas. Neste panorama, a modelagem de processos se torna demorada e de alto custo, podendo gerar modelos de processo que estão em desacordo com a realidade prevista pelas organizações. A extração de modelos ou fragmentos de processo a partir de descrições textuais pode contribuir para minimizar o esforço necessário à modelagem de processos. Neste contexto, esta dissertação propõe uma abordagem para identificar elementos de processo de negócio em texto em linguagem natural de forma semiautomática. Baseado no estudo de processamento de linguagem natural, foi definido um conjunto de regras de mapeamento para identificar elementos de processo em descrição textual Além disso, para avaliar as regras de mapeamento e viabilizar a abordagem proposta, foi desenvolvido um protótipo capaz de identificar elementos de processo em texto de forma semiautomática. Para medir o desempenho do protótipo proposto, foram utilizadas métricas de recuperação de informação, tais como precisão, revocação e medida-F. Além disso, foram aplicados dois questionários com o objetivo de verificar a aceitação perante os usuários. As avaliações apresentam resultados promissores. A análise de 70 textos, apresentou, em média, 73,61% de precisão, 70,15% de revocação e 71,82% de medida-F. Além disso, os resultados do primeiro e segundo questionários apresentaram, em média, 91,66% de aceitação dos participantes. A principal contribuição deste trabalho é propor regras de mapeamento para identificar elementos de processo em texto em linguagem natural para auxiliar e minimizar o tempo necessário à modelagem de processos realizada pelos analistas de processo.